π-kink propagation in the damped Frenkel-Kontorova model

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Coupled dissipative nonlinear oscillators exhibit complex spatiotemporal dynamics. Frenkel-Kontorova is a prototype model of coupled nonlinear oscillators, which exhibits coexistence between stable and unstable state. This model accounts for several physical systems such as the movement of atoms in condensed matter and magnetic chains, dynamics of coupled pendulums, and phase dynamics between superconductors. Here, we investigate kinks propagation into an unstable state in the Frenkel-Kontorova model with dissipation. We show that unlike point-like particles π-kinks spread in a pulsating manner. Using numerical simulations, we have characterized the shape of the π-kink oscillation. Different parts of the front propagate with the same mean speed, oscillating with the same frequency but different amplitude. The asymptotic behavior of this propagation allows us to determine the minimum mean speed of fronts analytically as a function of the coupling constant. A generalization of the Peierls-Nabarro potential is introduced to obtain an effective continuous description of the system. Numerical simulations show quite fair agreement between the Frenkel-Kontorova model and the proposed continuous description.

Original languageEnglish
Article number40003
JournalEPL
Volume119
Issue number4
DOIs
StatePublished - 1 Aug 2017

Fingerprint Dive into the research topics of 'π-kink propagation in the damped Frenkel-Kontorova model'. Together they form a unique fingerprint.

Cite this