A comparison of miniature lattice structures produced by material extrusion and vat photopolymerization additive manufacturing

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In this paper, we study the capabilities of two additive manufacturing technologies for the production of lattice structures, namely material extrusion and vat photopolymerization additive manufacturing. A set of polymer lattice structures with diverse unit cell types were built using these additive manufacturing methods and tested under compression. Lattice structures built using material extrusion had lower accuracy and a lower relative density caused by the air gaps between layers, but had higher elastic moduli and larger energy absorption capacities, as a consequence of both the thicker struts and the relatively larger strength of the feedstock material. Additionally, the deformation process in lattices was analyzed using sequential photographs taken during the compression tests, evidencing larger differences according to the manufacturing process and unit-cell type. Both additive manufacturing methods produced miniature lattice structures with similar mechanical properties, but vat polymerization should be the preferred option when high geometrical accuracy is required. Nevertheless, as the solid material determines the compressive response of the lattice structure, the broader availability of feedstock materials gives an advantage to material extrusion in applications requiring stiffer structures or with higher energy absorption capabilities.

Original languageEnglish
Article number2163
JournalPolymers
Volume13
Issue number13
DOIs
StatePublished - 1 Jul 2021
Externally publishedYes

Keywords

  • Additive manufacturing
  • Cellular materials
  • Compressive behavior
  • Digital light processing
  • Energy absorption
  • Lattices
  • Material extrusion
  • Vat photopoly-merization

Fingerprint

Dive into the research topics of 'A comparison of miniature lattice structures produced by material extrusion and vat photopolymerization additive manufacturing'. Together they form a unique fingerprint.

Cite this