TY - JOUR
T1 - A natural peptide and its variants derived from the processing of infectious pancreatic necrosis virus (IPNV) displaying enhanced antimicrobial activity
T2 - A novel alternative for the control of bacterial diseases
AU - Jofré, Claudio
AU - Guzmán, Fanny
AU - Cárdenas, Constanza
AU - Albericio, Fernando
AU - Marshall, Sergio H.
N1 - Funding Information:
This work was funded by the Government Grant CORFO-Innova Chile PTI-11 , AECID Spain Grant A/023783/09 , and CICYT ( CTQ2009-07758 ).
PY - 2011/5
Y1 - 2011/5
N2 - The larger segment of the infectious pancreatic necrosis virus (IPNV) codifies most of the structural and non-structural proteins of the virus in two overlapping open reading frames (ORFs). The longer of the two ORF is expressed as a polyprotein which generates a number of variable length peptides of unknown function during processing. Since an appealing hypothesis would be that these peptides are generated by the virus to act as antimicrobial agents that favor viral infectivity in their fish host, we decided to test this possibility by selecting a master peptide and using it to generate substitution variants that may enhance their antimicrobial potential. A 20-residue master peptide (p20) was selected from the well-described maturation process of the structural viral protein VP2; several variants were then designed and chemically synthesized, ranging in size from 16 to 20 residues. The synthesized peptides were tested for in vitro activity against several prototype bacterial pathogens using standardized laboratory procedures. Chemically synthesized p20 and all its variants displayed broad activity against the tested bacteria and none of them were toxic to eukaryotic cells at least 10× the concentration used against the bacteria. Interestingly, when p20 was tested against the very aggressive bacterial pathogen Piscirickettsia salmonis, a common co-infectant of IPNV in salmonid fish, the specific activity of the novel peptide was significantly higher than that displayed for bactericidal fish farm antibiotics such as oxolinic acid, flumequine and florfenicol, which are commonly used to control Piscirickettsiosis in the field. It is potentially significant that the approach presented in this report provides a novel alternative for generating new and ideally more efficient and friendly safeguards for bacterial prophylaxis.
AB - The larger segment of the infectious pancreatic necrosis virus (IPNV) codifies most of the structural and non-structural proteins of the virus in two overlapping open reading frames (ORFs). The longer of the two ORF is expressed as a polyprotein which generates a number of variable length peptides of unknown function during processing. Since an appealing hypothesis would be that these peptides are generated by the virus to act as antimicrobial agents that favor viral infectivity in their fish host, we decided to test this possibility by selecting a master peptide and using it to generate substitution variants that may enhance their antimicrobial potential. A 20-residue master peptide (p20) was selected from the well-described maturation process of the structural viral protein VP2; several variants were then designed and chemically synthesized, ranging in size from 16 to 20 residues. The synthesized peptides were tested for in vitro activity against several prototype bacterial pathogens using standardized laboratory procedures. Chemically synthesized p20 and all its variants displayed broad activity against the tested bacteria and none of them were toxic to eukaryotic cells at least 10× the concentration used against the bacteria. Interestingly, when p20 was tested against the very aggressive bacterial pathogen Piscirickettsia salmonis, a common co-infectant of IPNV in salmonid fish, the specific activity of the novel peptide was significantly higher than that displayed for bactericidal fish farm antibiotics such as oxolinic acid, flumequine and florfenicol, which are commonly used to control Piscirickettsiosis in the field. It is potentially significant that the approach presented in this report provides a novel alternative for generating new and ideally more efficient and friendly safeguards for bacterial prophylaxis.
KW - Antibacterial peptide
KW - IPNV processing
KW - Peptide modeling
KW - Peptide synthesis
KW - Viral derived antibacterial peptide
UR - http://www.scopus.com/inward/record.url?scp=79955468831&partnerID=8YFLogxK
U2 - 10.1016/j.peptides.2011.01.026
DO - 10.1016/j.peptides.2011.01.026
M3 - Article
C2 - 21291934
AN - SCOPUS:79955468831
VL - 32
SP - 852
EP - 858
JO - Peptides
JF - Peptides
SN - 0196-9781
IS - 5
ER -