TY - JOUR
T1 - A transparent solid-state ion gel for supercapacitor device applications
AU - Navarrete-Astorga, Elena
AU - Rodríguez-Moreno, Jorge
AU - Dalchiele, Enrique A.
AU - Schrebler, Ricardo
AU - Leyton, Patricio
AU - Ramos-Barrado, José R.
AU - Martín, Francisco
N1 - Publisher Copyright:
© 2017, Springer-Verlag Berlin Heidelberg.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - A feasibility study of the synthesis of gel polymer electrolytes based in methyl methacrylate (MMA) and 1-vinyl-2-pyrrolidone (VP) using [HEMIm][BF4] as common ionic liquid has been done. A novel PVP/[HEMIm][BF4] solid-state and self-standing ion gel electrolyte has been successfully prepared. The thermal degradation of PVP/[HEMIm][BF4] ion gel occurs in two steps with the first one at above 200 °C and the main one over 390 °C. This solid-state ion gel is transparent, showing an optical transmittance with a maximum value of 90% in the visible wavelength region from 370 to 770 nm. The synthesized PVP/[HEMIm][BF4] solid-state ion gel exhibits an electrochemical stability window of ca. 5.0 V and an acceptable ionic conductivity of σ = 5.7 10−3 S cm−1 at room temperature. A symmetrical pseudocapacitive supercapacitor has been assembled and characterized using this PVP/[HEMIm][BF4] solid-state ion gel—glass/ITO/PEDOT/PVP/[HEMIm][BF4]/PEDOT/ITO/glass. It is found that the supercapacitor shows a typical areal specific capacitance of 3.1 mF cm−2, a maximum energy density of 2.5 μWh cm−2, and an areal specific power density of ca. 1 mW cm−2. [Figure not available: see fulltext.]
AB - A feasibility study of the synthesis of gel polymer electrolytes based in methyl methacrylate (MMA) and 1-vinyl-2-pyrrolidone (VP) using [HEMIm][BF4] as common ionic liquid has been done. A novel PVP/[HEMIm][BF4] solid-state and self-standing ion gel electrolyte has been successfully prepared. The thermal degradation of PVP/[HEMIm][BF4] ion gel occurs in two steps with the first one at above 200 °C and the main one over 390 °C. This solid-state ion gel is transparent, showing an optical transmittance with a maximum value of 90% in the visible wavelength region from 370 to 770 nm. The synthesized PVP/[HEMIm][BF4] solid-state ion gel exhibits an electrochemical stability window of ca. 5.0 V and an acceptable ionic conductivity of σ = 5.7 10−3 S cm−1 at room temperature. A symmetrical pseudocapacitive supercapacitor has been assembled and characterized using this PVP/[HEMIm][BF4] solid-state ion gel—glass/ITO/PEDOT/PVP/[HEMIm][BF4]/PEDOT/ITO/glass. It is found that the supercapacitor shows a typical areal specific capacitance of 3.1 mF cm−2, a maximum energy density of 2.5 μWh cm−2, and an areal specific power density of ca. 1 mW cm−2. [Figure not available: see fulltext.]
KW - Ion gel
KW - Ionic liquid
KW - Polymer
KW - Supercapacitor
KW - Transparent
UR - http://www.scopus.com/inward/record.url?scp=85009290063&partnerID=8YFLogxK
U2 - 10.1007/s10008-016-3494-y
DO - 10.1007/s10008-016-3494-y
M3 - Article
AN - SCOPUS:85009290063
SN - 1432-8488
VL - 21
SP - 1431
EP - 1444
JO - Journal of Solid State Electrochemistry
JF - Journal of Solid State Electrochemistry
IS - 5
ER -