TY - JOUR
T1 - An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic
T2 - Methodology and Case Study in Brazil
AU - Ospina, Raydonal
AU - Gondim, João A.M.
AU - Leiva, Víctor
AU - Castro, Cecilia
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - This comprehensive overview focuses on the issues presented by the pandemic due to COVID-19, understanding its spread and the wide-ranging effects of government-imposed restrictions. The overview examines the utility of autoregressive integrated moving average (ARIMA) models, which are often overlooked in pandemic forecasting due to perceived limitations in handling complex and dynamic scenarios. Our work applies ARIMA models to a case study using data from Recife, the capital of Pernambuco, Brazil, collected between March and September 2020. The research provides insights into the implications and adaptability of predictive methods in the context of a global pandemic. The findings highlight the ARIMA models’ strength in generating accurate short-term forecasts, crucial for an immediate response to slow down the disease’s rapid spread. Accurate and timely predictions serve as the basis for evidence-based public health strategies and interventions, greatly assisting in pandemic management. Our model selection involves an automated process optimizing parameters by using autocorrelation and partial autocorrelation plots, as well as various precise measures. The performance of the chosen ARIMA model is confirmed when comparing its forecasts with real data reported after the forecast period. The study successfully forecasts both confirmed and recovered COVID-19 cases across the preventive plan phases in Recife. However, limitations in the model’s performance are observed as forecasts extend into the future. By the end of the study period, the model’s error substantially increased, and it failed to detect the stabilization and deceleration of cases. The research highlights challenges associated with COVID-19 data in Brazil, such as under-reporting and data recording delays. Despite these limitations, the study emphasizes the potential of ARIMA models for short-term pandemic forecasting while emphasizing the need for further research to enhance long-term predictions.
AB - This comprehensive overview focuses on the issues presented by the pandemic due to COVID-19, understanding its spread and the wide-ranging effects of government-imposed restrictions. The overview examines the utility of autoregressive integrated moving average (ARIMA) models, which are often overlooked in pandemic forecasting due to perceived limitations in handling complex and dynamic scenarios. Our work applies ARIMA models to a case study using data from Recife, the capital of Pernambuco, Brazil, collected between March and September 2020. The research provides insights into the implications and adaptability of predictive methods in the context of a global pandemic. The findings highlight the ARIMA models’ strength in generating accurate short-term forecasts, crucial for an immediate response to slow down the disease’s rapid spread. Accurate and timely predictions serve as the basis for evidence-based public health strategies and interventions, greatly assisting in pandemic management. Our model selection involves an automated process optimizing parameters by using autocorrelation and partial autocorrelation plots, as well as various precise measures. The performance of the chosen ARIMA model is confirmed when comparing its forecasts with real data reported after the forecast period. The study successfully forecasts both confirmed and recovered COVID-19 cases across the preventive plan phases in Recife. However, limitations in the model’s performance are observed as forecasts extend into the future. By the end of the study period, the model’s error substantially increased, and it failed to detect the stabilization and deceleration of cases. The research highlights challenges associated with COVID-19 data in Brazil, such as under-reporting and data recording delays. Despite these limitations, the study emphasizes the potential of ARIMA models for short-term pandemic forecasting while emphasizing the need for further research to enhance long-term predictions.
KW - ARIMA forecasting
KW - epidemiological forecasting
KW - pandemic analytics
KW - predictive modeling
KW - public health intelligence
UR - http://www.scopus.com/inward/record.url?scp=85166279810&partnerID=8YFLogxK
U2 - 10.3390/math11143069
DO - 10.3390/math11143069
M3 - Review article
AN - SCOPUS:85166279810
SN - 2227-7390
VL - 11
JO - Mathematics
JF - Mathematics
IS - 14
M1 - 3069
ER -