TY - JOUR
T1 - Analysis of the pseudomonas aeruginosa aminoglycoside differential resistomes allows defining genes simultaneously involved in intrinsic antibiotic resistance and virulence
AU - Sanz-García, Fernando
AU - Alvarez-Ortega, Carolina
AU - Olivares-Pacheco, Jorge
AU - Blanco, Paula
AU - Martínez, José Luis
AU - Hernando-Amado, Sara
N1 - Publisher Copyright:
Copyright © 2019 American Society for Microbiology. All Rights Reserved.
PY - 2019/5
Y1 - 2019/5
N2 - High-throughput screening of transposon insertion libraries is a useful strategy for unveiling bacterial genes whose inactivation results in an altered susceptibility to antibiotics. A potential drawback of these studies is they are usually based on just one model antibiotic for each structural family, under the assumption that the results can be extrapolated to all members of said family. To determine if this simplification is appropriate, we have analyzed the susceptibility of mutants of Pseudomonas aeruginosa to four aminoglycosides. Our results indicate that each mutation produces different effects on susceptibility to the tested aminoglycosides, with only two mutants showing similar changes in the susceptibility to all studied aminoglycosides. This indicates that the role of a particular gene in the resistome of a given antibiotic should not be generalized to other members of the same structural family. Five aminoglycoside-hypersusceptible mutants inactivating glnD, hflK, PA2798, PA3016, and hpf were chosen for further analysis in order to elucidate if lower aminoglycoside susceptibility correlates with cross-hypersusceptibility to other antibiotics and with impaired virulence. Our results indicate that glnD inactivation leads to increased cross-susceptibility to different antibiotics. The mutant in this gene is strongly impaired in virulence traits such as pyocyanin production, biofilm formation, elastase activity, and swarming motility and the ability to kill Caenorhabditis elegans. Thus, GlnD might be an interesting target for developing antibiotic coadjuvants with antiresistance and antivirulence properties against P. aeruginosa.
AB - High-throughput screening of transposon insertion libraries is a useful strategy for unveiling bacterial genes whose inactivation results in an altered susceptibility to antibiotics. A potential drawback of these studies is they are usually based on just one model antibiotic for each structural family, under the assumption that the results can be extrapolated to all members of said family. To determine if this simplification is appropriate, we have analyzed the susceptibility of mutants of Pseudomonas aeruginosa to four aminoglycosides. Our results indicate that each mutation produces different effects on susceptibility to the tested aminoglycosides, with only two mutants showing similar changes in the susceptibility to all studied aminoglycosides. This indicates that the role of a particular gene in the resistome of a given antibiotic should not be generalized to other members of the same structural family. Five aminoglycoside-hypersusceptible mutants inactivating glnD, hflK, PA2798, PA3016, and hpf were chosen for further analysis in order to elucidate if lower aminoglycoside susceptibility correlates with cross-hypersusceptibility to other antibiotics and with impaired virulence. Our results indicate that glnD inactivation leads to increased cross-susceptibility to different antibiotics. The mutant in this gene is strongly impaired in virulence traits such as pyocyanin production, biofilm formation, elastase activity, and swarming motility and the ability to kill Caenorhabditis elegans. Thus, GlnD might be an interesting target for developing antibiotic coadjuvants with antiresistance and antivirulence properties against P. aeruginosa.
KW - Adjuvants
KW - Intrinsic resistome
KW - Pseudomonas aeruginosa
KW - Virulence
UR - http://www.scopus.com/inward/record.url?scp=85065315627&partnerID=8YFLogxK
U2 - 10.1128/AAC.00185-19
DO - 10.1128/AAC.00185-19
M3 - Article
C2 - 30858210
AN - SCOPUS:85065315627
SN - 0066-4804
VL - 63
JO - Antimicrobial Agents and Chemotherapy
JF - Antimicrobial Agents and Chemotherapy
IS - 5
M1 - e00185-19
ER -