Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels

SCOTT DAVID KIMMINS, Saltuk B. Hanay, Robert Murphy, Joanne O’Dwyer, Jessica Ramalho, Emily J. Ryan, Cathal J. Kearney, Fergal J. O'Brien, Sally Ann Cryan, Deirdre Fitzgerald-Hughes, Andreas Heise

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Hydrogels are perfectly suited to support cell and tissue growth in advanced tissue engineering applications as well as classical wound treatment scenarios. Ideal hydrogel materials for these applications should be easy to produce, biocompatible, resorbable and antimicrobial. Here we report the fabrication of degradable covalent antimicrobial lysine and tryptophan containing copolypeptide hydrogels, whereby the hydrogel properties can be independently modulated by the copolypeptide monomer ratio and chiral composition. Well-defined statistical copolypeptides comprising different overall molecular weights as well as ratios ofl- andd-lysine and tryptophan at ratios of 35 : 15, 70 : 30 and 80 : 20 were obtained byN-carboxyanhydride (NCA) polymerisation and subsequently crosslinked by the selective reaction of bifunctional triazolinedione (TAD) with tryptophan. Real-time rheology was used to monitor the crosslinking reaction recording the fastest increase and overall modulus for copolypeptides with the higher tryptophan ratio. Water uptake of cylindrical hydrogel samples was dependent on crosslinking ratio but found independent of chiral composition, while enzymatic degradation proceeded significantly faster for samples containing morel-amino acids. Antimicrobial activity on a range of hydrogels containing different polypeptide chain lengths, lysine/tryptophan composition andl/denantiomers was tested against reference laboratory strains of Gram-negativeEscherichia coli(E. coli; ATCC25922) and Gram-positive,Staphylococcus aureus(S. aureus; ATCC25923). log reductions of 2.8-3.4 were recorded for the most potent hydrogels.In vitroleachable cytotoxicity tests confirmed non-cytotoxicity as per ISO guidelines.

Original languageEnglish
Pages (from-to)5456-5464
Number of pages9
JournalJournal of Materials Chemistry B
Volume9
Issue number27
DOIs
StatePublished - 21 Jul 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels'. Together they form a unique fingerprint.

Cite this