TY - JOUR
T1 - Automating Configuration of Convolutional Neural Network Hyperparameters Using Genetic Algorithm
AU - Johnson, Franklin
AU - Valderrama, Alvaro
AU - Valle, Carlos
AU - Crawford, Broderick
AU - Soto, Ricardo
AU - Nanculef, Ricardo
N1 - Publisher Copyright:
© 2013 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - In recent years, Convolutional Neural Networks (CNN) have been widely used for real-world applications in the field of computer vision. Their class-leading performance, however, depends heavily on the architecture used for a given problem. In most cases, the architectures are manually optimized by the researchers, a time-consuming process hard to achieve without prior knowledge of CNN. In this paper, we propose a new genetic algorithm for the optimization of the CNN architecture for a given image classification problem. This algorithm extends and refines existing research in the field, by allowing depth exploration, introducing a novel sequential crossover operator, using an incremental selective pressure schedule over evolution (favoring higher diversity in early generations) and by evaluating individual performances over the validation set with early stopping. The technique is validated in three image classification dataset, namely, CIFAR10, MNIST and Caltech256 datasets, which are widely used benchmarks for image classification algorithms. We evaluate the performance and total execution time over these datasets, and compare our results with those achieved by the best genetic methods published so far. In all cases, we achieve better results in terms of test accuracy, consistently over different datasets, while remaining in the same orders of magnitude of execution time of the fastest approaches.
AB - In recent years, Convolutional Neural Networks (CNN) have been widely used for real-world applications in the field of computer vision. Their class-leading performance, however, depends heavily on the architecture used for a given problem. In most cases, the architectures are manually optimized by the researchers, a time-consuming process hard to achieve without prior knowledge of CNN. In this paper, we propose a new genetic algorithm for the optimization of the CNN architecture for a given image classification problem. This algorithm extends and refines existing research in the field, by allowing depth exploration, introducing a novel sequential crossover operator, using an incremental selective pressure schedule over evolution (favoring higher diversity in early generations) and by evaluating individual performances over the validation set with early stopping. The technique is validated in three image classification dataset, namely, CIFAR10, MNIST and Caltech256 datasets, which are widely used benchmarks for image classification algorithms. We evaluate the performance and total execution time over these datasets, and compare our results with those achieved by the best genetic methods published so far. In all cases, we achieve better results in terms of test accuracy, consistently over different datasets, while remaining in the same orders of magnitude of execution time of the fastest approaches.
KW - Artificial neural network
KW - genetic algorithm
KW - image classification
UR - http://www.scopus.com/inward/record.url?scp=85090970342&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2020.3019245
DO - 10.1109/ACCESS.2020.3019245
M3 - Article
AN - SCOPUS:85090970342
SN - 2169-3536
VL - 8
SP - 156139
EP - 156152
JO - IEEE Access
JF - IEEE Access
M1 - 9177040
ER -