TY - JOUR
T1 - Autoregressive Planet Search
T2 - Application to the Kepler Mission
AU - Caceres, Gabriel A.
AU - Feigelson, Eric D.
AU - Babu, G. Jogesh
AU - Bahamonde, Natalia
AU - Christen, Alejandra
AU - Bertin, Karine
AU - Meza, Cristian
AU - Curé, Michel
N1 - Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019
Y1 - 2019
N2 - The 4 yr light curves of 156,717 stars observed with NASA's Kepler mission are analyzed using the autoregressive planet search (ARPS) methodology described by Caceres et al. The three stages of processing are maximum-likelihood ARIMA modeling of the light curves to reduce stellar brightness variations, constructing the transit comb filter periodogram to identify transit-like periodic dips in the ARIMA residuals, and Random Forest classification trained on Kepler team confirmed planets using several dozen features from the analysis. Orbital periods between 0.2 and 100 days are examined. The result is a recovery of 76% of confirmed planets, 97% when period and transit depth constraints are added. The classifier is then applied to the full Kepler data set; 1004 previously noticed and 97 new stars have light-curve criteria consistent with the confirmed planets, after subjective vetting removes clear false alarms and false positive cases. The 97 Kepler ARPS candidate transits mostly have periods of P < 10 days; many are ultrashort period hot planets with radii <1% of the host star. Extensive tabular and graphical output from the ARPS time series analysis is provided to assist in other research relating to the Kepler sample.
AB - The 4 yr light curves of 156,717 stars observed with NASA's Kepler mission are analyzed using the autoregressive planet search (ARPS) methodology described by Caceres et al. The three stages of processing are maximum-likelihood ARIMA modeling of the light curves to reduce stellar brightness variations, constructing the transit comb filter periodogram to identify transit-like periodic dips in the ARIMA residuals, and Random Forest classification trained on Kepler team confirmed planets using several dozen features from the analysis. Orbital periods between 0.2 and 100 days are examined. The result is a recovery of 76% of confirmed planets, 97% when period and transit depth constraints are added. The classifier is then applied to the full Kepler data set; 1004 previously noticed and 97 new stars have light-curve criteria consistent with the confirmed planets, after subjective vetting removes clear false alarms and false positive cases. The 97 Kepler ARPS candidate transits mostly have periods of P < 10 days; many are ultrashort period hot planets with radii <1% of the host star. Extensive tabular and graphical output from the ARPS time series analysis is provided to assist in other research relating to the Kepler sample.
KW - methods: statistical
KW - planets and satellites: detection
KW - planets and satellites: terrestrial planets
UR - http://www.scopus.com/inward/record.url?scp=85072025530&partnerID=8YFLogxK
U2 - 10.3847/1538-3881/ab26ba
DO - 10.3847/1538-3881/ab26ba
M3 - Article
AN - SCOPUS:85072025530
SN - 0004-6256
VL - 158
JO - Astronomical Journal
JF - Astronomical Journal
IS - 2
M1 - 58
ER -