Bacterial Alginate-Based Hydrogel Reduces Hydro-Mechanical Soil-Related Problems in Agriculture Facing Climate Change

Cesar Barrientos-Sanhueza, Danny Cargnino-Cisternas, Alvaro Díaz-Barrera, Italo F. Cuneo

Research output: Contribution to journalArticlepeer-review

Abstract

Agricultural systems are facing the negative impacts of erosion and water scarcity, directly impacting the hydro-mechanical behavior of soil aggregation. Several technologies have been proposed to reduce hydro-mechanical soil-related problems in agriculture. Biopolymer-based hydrogels have been reported to be a great tool to tackle these problems in soils. In this study, we investigated the hydro-mechanical behavior of different soils media treated with Ca-bacterial alginate hydrogel. We used an unconfined uniaxial compression test, aggregate stability test and hydraulic conductivity measurements to investigate the mechanical and hydraulic behavior of treated soils media. Our results from unconfined uniaxial compression test showed that yield stress (i.e., strength) increased in treated soils with higher kaolinite and water content (i.e., HCM3), compared with untreated coarse quartz sand (i.e., CM1). Furthermore, we found that temperature is an important factor in the gelation capacity of our hydrogel. At room temperature, HCM3 displayed the higher aggregate stability, almost 5.5-fold compared with treated coarse quartz sand (HCM1), while this differential response was not sustained at warm temperature. In general, the addition of different quantities of kaolinite decreased the saturated hydraulic conductivity for all treatments. Finally, bright field microscopy imaging represents the soil media matrix between sand and clay particles with Ca-bacterial alginate hydrogel that modify the hydro-mechanical behavior of different soils media. The results of this study could be helpful for the soil-related problems in agriculture facing the negative effects of climate change.

Original languageEnglish
Article number922
JournalPolymers
Volume14
Issue number5
DOIs
StatePublished - 1 Mar 2022
Externally publishedYes

Keywords

  • Agriculture
  • Bacterial alginate
  • Climate change
  • Hydrogel
  • Soil hydro-mechanical behavior

Fingerprint

Dive into the research topics of 'Bacterial Alginate-Based Hydrogel Reduces Hydro-Mechanical Soil-Related Problems in Agriculture Facing Climate Change'. Together they form a unique fingerprint.

Cite this