TY - JOUR
T1 - Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean
AU - Cornejo, M.
AU - Bravo, L.
AU - Ramos, M.
AU - Pizarro, O.
AU - Karstensen, J.
AU - Gallegos, M.
AU - Correa-Ramirez, M.
AU - Silva, N.
AU - Farias, L.
AU - Karp-Boss, L.
N1 - Publisher Copyright:
© Author(s) 2015.
PY - 2015/9/2
Y1 - 2015/9/2
N2 - Eastern boundary upwelling systems are characterized by high productivity that often leads to subsurface hypoxia on the shelf. Mesoscale eddies are important, frequent, and persistent features of circulation in these regions, transporting physical, chemical and biological properties from shelves to the open ocean. In austral fall of 2011, during the Tara Oceans expedition, a subsurface layer (200-400 m) in which the concentration of oxygen was very low (< 2 μmol kg-1 of O2) was observed in the eastern South Pacific, ∼ 900 km offshore (30° S, 81° W). Satellite altimetry combined with CTD observations associated the local oxygen anomaly with an intrathermocline, anticyclonic, mesoscale eddy with a diameter of about 150 km. The eddy contained Equatorial Subsurface Water (ESSW) that at this latitude is normally restricted near the coast. Undersaturation (44%) of nitrous oxide (N2O) and nitrite accumulation (> 0.5 μM) gave evidence for denitrification in this water mass. Based on satellite altimetry, we tracked the eddy back to its region of formation on the coast of central Chile (36.1° S, 74.6° W). We estimate that the eddy formed in April 2010. Field studies conducted on the Chilean shelf in June 2010 provided approximate information on initial O2 and N2O concentrations of "source water" in the region at the time of eddy formation. Concentrations of both O2 and N2O in the oxygen minimum zone (OMZ) of the offshore eddy were lower than its surroundings or "source water" on the shelf, suggesting that these chemical species were consumed as the eddy moved offshore. Estimates of apparent oxygen utilization rates at the OMZ of the eddy ranged from 0.29 to 44 nmol L-1 d-1 and the rate of N2O consumption was 3.92 nmol L-1 d-1. Our results show that mesoscale eddies in the ESP not only transport physical properties of the ESSW from the coast to the ocean interior, but also export and transform biogeochemical properties, creating suboxic environments in the oligotrophic region of the eastern South Pacific. Suboxic water masses that are advected by eddies act as hotspots for denitrification and loss of fixed nitrogen from the system.
AB - Eastern boundary upwelling systems are characterized by high productivity that often leads to subsurface hypoxia on the shelf. Mesoscale eddies are important, frequent, and persistent features of circulation in these regions, transporting physical, chemical and biological properties from shelves to the open ocean. In austral fall of 2011, during the Tara Oceans expedition, a subsurface layer (200-400 m) in which the concentration of oxygen was very low (< 2 μmol kg-1 of O2) was observed in the eastern South Pacific, ∼ 900 km offshore (30° S, 81° W). Satellite altimetry combined with CTD observations associated the local oxygen anomaly with an intrathermocline, anticyclonic, mesoscale eddy with a diameter of about 150 km. The eddy contained Equatorial Subsurface Water (ESSW) that at this latitude is normally restricted near the coast. Undersaturation (44%) of nitrous oxide (N2O) and nitrite accumulation (> 0.5 μM) gave evidence for denitrification in this water mass. Based on satellite altimetry, we tracked the eddy back to its region of formation on the coast of central Chile (36.1° S, 74.6° W). We estimate that the eddy formed in April 2010. Field studies conducted on the Chilean shelf in June 2010 provided approximate information on initial O2 and N2O concentrations of "source water" in the region at the time of eddy formation. Concentrations of both O2 and N2O in the oxygen minimum zone (OMZ) of the offshore eddy were lower than its surroundings or "source water" on the shelf, suggesting that these chemical species were consumed as the eddy moved offshore. Estimates of apparent oxygen utilization rates at the OMZ of the eddy ranged from 0.29 to 44 nmol L-1 d-1 and the rate of N2O consumption was 3.92 nmol L-1 d-1. Our results show that mesoscale eddies in the ESP not only transport physical properties of the ESSW from the coast to the ocean interior, but also export and transform biogeochemical properties, creating suboxic environments in the oligotrophic region of the eastern South Pacific. Suboxic water masses that are advected by eddies act as hotspots for denitrification and loss of fixed nitrogen from the system.
UR - http://www.scopus.com/inward/record.url?scp=85036585615&partnerID=8YFLogxK
U2 - 10.5194/bgd-12-14481-2015
DO - 10.5194/bgd-12-14481-2015
M3 - Article
AN - SCOPUS:85036585615
SN - 1810-6277
VL - 12
SP - 14481
EP - 14506
JO - Biogeosciences Discussions
JF - Biogeosciences Discussions
IS - 17
ER -