TY - JOUR
T1 - Cell formation in group technology using constraint programming and Boolean satisfiability
AU - Soto, Ricardo
AU - Kjellerstrand, Hakan
AU - Durán, Orlando
AU - Crawford, Broderick
AU - Monfroy, Eric
AU - Paredes, Fernando
PY - 2012/10/1
Y1 - 2012/10/1
N2 - Cell formation consists in organizing a plant as a set of cells, each of them containing machines that process similar types or families of parts. The idea is to minimize the part flow among cells in order to reduce costs and increase productivity. The literature presents different approaches devoted to solve this problem, which are mainly based on mathematical programming and on evolutionary computing. Mathematical programming can guarantee a global optimal solution, however at a higher computational cost than an evolutionary algorithm, which can assure a good enough optimum in a fixed amount of time. In this paper, we model and solve this problem by using state-of-the-art constraint programming (CP) techniques and Boolean satisfiability (SAT) technology. We present different experimental results that demonstrate the efficiency of the proposed optimization models. Indeed, CP and SAT implementations are able to reach the global optima in all tested instances and in competitive runtime.
AB - Cell formation consists in organizing a plant as a set of cells, each of them containing machines that process similar types or families of parts. The idea is to minimize the part flow among cells in order to reduce costs and increase productivity. The literature presents different approaches devoted to solve this problem, which are mainly based on mathematical programming and on evolutionary computing. Mathematical programming can guarantee a global optimal solution, however at a higher computational cost than an evolutionary algorithm, which can assure a good enough optimum in a fixed amount of time. In this paper, we model and solve this problem by using state-of-the-art constraint programming (CP) techniques and Boolean satisfiability (SAT) technology. We present different experimental results that demonstrate the efficiency of the proposed optimization models. Indeed, CP and SAT implementations are able to reach the global optima in all tested instances and in competitive runtime.
KW - Boolean satisfiability
KW - Constraint programming
KW - Machine grouping
KW - Manufacturing cells
UR - http://www.scopus.com/inward/record.url?scp=84861342711&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2012.04.020
DO - 10.1016/j.eswa.2012.04.020
M3 - Article
AN - SCOPUS:84861342711
SN - 0957-4174
VL - 39
SP - 11423
EP - 11427
JO - Expert Systems with Applications
JF - Expert Systems with Applications
IS - 13
ER -