TY - JOUR
T1 - Characterization of a new molecule capable of inhibiting several steps of the amyloid cascade in Alzheimer's disease
AU - Peters, Christian
AU - Bascuñán, Denisse
AU - Burgos, Carlos F.
AU - Bobadilla, Catalina
AU - González-Sanmiguel, Juliana
AU - Boopathi, Subramanian
AU - Riffo, Nicolás
AU - Fernández-Pérez, Eduardo J.
AU - Tarnok, María Elena
AU - Aguilar, Luis Felipe
AU - Gonzalez, Wendy
AU - Aguayo, Luis G.
N1 - Publisher Copyright:
© 2020
PY - 2020/7
Y1 - 2020/7
N2 - Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in elderly people. Existent therapies are directed at alleviating some symptoms, but are not effective in altering the course of the disease. Methods: Based on our previous study that showed that an Aβ-interacting small peptide protected against the toxic effects of amyloid-beta peptide (Aβ), we carried out an array of in silico, in vitro, and in vivo assays to identify a molecule having neuroprotective properties. Results: In silico studies showed that the molecule, referred to as M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine), was able to interact with the Aβ peptide. Additionally, in vitro assays showed that M30 blocked Aβ aggregation, association to the plasma membrane, synaptotoxicity, intracellular calcium, and cellular toxicity, while in vivo experiments demonstrated that M30 induced a neuroprotective effect by decreasing the toxicity of Aβ in the dentate gyrus of the hippocampus and improving the alteration in spatial memory in behavior assays. Discussion: Therefore, we propose that this new small molecule could be a useful candidate for the additional development of a treatment against AD since it appears to block multiple steps in the amyloid cascade. Overall, since there are no drugs that effectively block the progression of AD, this approach represents an innovative strategy. Significance: Currently, there is no effective treatment for AD and the expectations to develop an effective therapy are low. Using in silico, in vitro, and in vivo experiments, we identified a new compound that is able to inhibit Aβ-induced neurotoxicity, specifically aggregation, association to neurons, synaptic toxicity, calcium dyshomeostasis and memory impairment induced by Aβ. Because Aβ toxicity is central to AD progression, the inhibition mediated by this new molecule might be useful as a therapeutic tool.
AB - Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in elderly people. Existent therapies are directed at alleviating some symptoms, but are not effective in altering the course of the disease. Methods: Based on our previous study that showed that an Aβ-interacting small peptide protected against the toxic effects of amyloid-beta peptide (Aβ), we carried out an array of in silico, in vitro, and in vivo assays to identify a molecule having neuroprotective properties. Results: In silico studies showed that the molecule, referred to as M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine), was able to interact with the Aβ peptide. Additionally, in vitro assays showed that M30 blocked Aβ aggregation, association to the plasma membrane, synaptotoxicity, intracellular calcium, and cellular toxicity, while in vivo experiments demonstrated that M30 induced a neuroprotective effect by decreasing the toxicity of Aβ in the dentate gyrus of the hippocampus and improving the alteration in spatial memory in behavior assays. Discussion: Therefore, we propose that this new small molecule could be a useful candidate for the additional development of a treatment against AD since it appears to block multiple steps in the amyloid cascade. Overall, since there are no drugs that effectively block the progression of AD, this approach represents an innovative strategy. Significance: Currently, there is no effective treatment for AD and the expectations to develop an effective therapy are low. Using in silico, in vitro, and in vivo experiments, we identified a new compound that is able to inhibit Aβ-induced neurotoxicity, specifically aggregation, association to neurons, synaptic toxicity, calcium dyshomeostasis and memory impairment induced by Aβ. Because Aβ toxicity is central to AD progression, the inhibition mediated by this new molecule might be useful as a therapeutic tool.
KW - Alzheimer
KW - Drug
KW - Multi-step
KW - Novel
KW - Small molecule
KW - Therapy
UR - http://www.scopus.com/inward/record.url?scp=85084987582&partnerID=8YFLogxK
U2 - 10.1016/j.nbd.2020.104938
DO - 10.1016/j.nbd.2020.104938
M3 - Article
C2 - 32434047
AN - SCOPUS:85084987582
SN - 0969-9961
VL - 141
JO - Neurobiology of Disease
JF - Neurobiology of Disease
M1 - 104938
ER -