TY - JOUR
T1 - Clustering-based binarization methods applied to the crow search algorithm for 0/1 combinatorial problems
AU - Valdivia, Sergio
AU - Soto, Ricardo
AU - Crawford, Broderick
AU - Caselli, Nicolás
AU - Paredes, Fernando
AU - Castro, Carlos
AU - Olivares, Rodrigo
N1 - Publisher Copyright:
© 2020 by the authors.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Metaheuristics are smart problem solvers devoted to tackling particularly large optimization problems. During the last 20 years, they have largely been used to solve different problems from the academic as well as from the real-world. However, most of them have originally been designed for operating over real domain variables, being necessary to tailor its internal core, for instance, to be effective in a binary space of solutions. Various works have demonstrated that this internal modification, known as binarization, is not a simple task, since the several existing binarization ways may lead to very different results. This of course forces the user to implement and analyze a large list of binarization schemas for reaching good results. In this paper, we explore two efficient clustering methods, namely KMeans and DBscan to alter a metaheuristic in order to improve it, and thus do not require on the knowledge of an expert user for identifying which binarization strategy works better during the run. Both techniques have widely been applied to solve clustering problems, allowing us to exploit useful information gathered during the search to efficiently control and improve the binarization process. We integrate those techniques to a recent metaheuristic called Crow Search, and we conduct experiments where KMeans and DBscan are contrasted to 32 different binarization methods. The results show that the proposed approaches outperform most of the binarization strategies for a large list of well-known optimization instances.
AB - Metaheuristics are smart problem solvers devoted to tackling particularly large optimization problems. During the last 20 years, they have largely been used to solve different problems from the academic as well as from the real-world. However, most of them have originally been designed for operating over real domain variables, being necessary to tailor its internal core, for instance, to be effective in a binary space of solutions. Various works have demonstrated that this internal modification, known as binarization, is not a simple task, since the several existing binarization ways may lead to very different results. This of course forces the user to implement and analyze a large list of binarization schemas for reaching good results. In this paper, we explore two efficient clustering methods, namely KMeans and DBscan to alter a metaheuristic in order to improve it, and thus do not require on the knowledge of an expert user for identifying which binarization strategy works better during the run. Both techniques have widely been applied to solve clustering problems, allowing us to exploit useful information gathered during the search to efficiently control and improve the binarization process. We integrate those techniques to a recent metaheuristic called Crow Search, and we conduct experiments where KMeans and DBscan are contrasted to 32 different binarization methods. The results show that the proposed approaches outperform most of the binarization strategies for a large list of well-known optimization instances.
KW - Binary domains
KW - Bio-inspired computing
KW - Clustering techniques
KW - Crow search algorithm
KW - Metaheuristics
UR - http://www.scopus.com/inward/record.url?scp=85088434788&partnerID=8YFLogxK
U2 - 10.3390/MATH8071070
DO - 10.3390/MATH8071070
M3 - Article
AN - SCOPUS:85088434788
SN - 2227-7390
VL - 8
JO - Mathematics
JF - Mathematics
IS - 7
M1 - 1070
ER -