TY - JOUR
T1 - Cosmic expansion with matter creation and bulk viscosity
AU - Cárdenas, Víctor H.
AU - Cruz, Miguel
AU - Lepe, Samuel
N1 - Publisher Copyright:
© 2020 American Physical Society.
PY - 2020/12/29
Y1 - 2020/12/29
N2 - We explore the cosmological implications at effective level of matter creation effects in a dissipative fluid for a Friedmann-Lemaitre-Robertson-Walker geometry; we also perform a statistical analysis for this kind of model. By considering an inhomogeneous ansatz for the particle production rate, which we obtain for a created matter of dark matter type, we can have a quintessence scenario or a future singularity known as a little rip; this is in dependence of the value of a constant parameter, η, which characterizes the matter production effects. The dimensionless age of this kind of universe is computed, showing that this number is greater than the standard cosmology value; this is typical of universes with the presence of dark energy. The inclusion of baryonic matter is studied. We implement the construction of the particle production rate for a dissipative fluid by considering two approaches for the expression of the bulk viscous pressure: we find that, in the Eckart model, we have a big rip singularity leading to a catastrophic matter production, and in the truncated version of the Israel-Stewart model this rate remains bounded, which leads to a quintessence scenario. For a nonadiabatic dissipative fluid, we obtain a positive temperature, and the cosmic expansion obeys the second law of thermodynamics.
AB - We explore the cosmological implications at effective level of matter creation effects in a dissipative fluid for a Friedmann-Lemaitre-Robertson-Walker geometry; we also perform a statistical analysis for this kind of model. By considering an inhomogeneous ansatz for the particle production rate, which we obtain for a created matter of dark matter type, we can have a quintessence scenario or a future singularity known as a little rip; this is in dependence of the value of a constant parameter, η, which characterizes the matter production effects. The dimensionless age of this kind of universe is computed, showing that this number is greater than the standard cosmology value; this is typical of universes with the presence of dark energy. The inclusion of baryonic matter is studied. We implement the construction of the particle production rate for a dissipative fluid by considering two approaches for the expression of the bulk viscous pressure: we find that, in the Eckart model, we have a big rip singularity leading to a catastrophic matter production, and in the truncated version of the Israel-Stewart model this rate remains bounded, which leads to a quintessence scenario. For a nonadiabatic dissipative fluid, we obtain a positive temperature, and the cosmic expansion obeys the second law of thermodynamics.
UR - http://www.scopus.com/inward/record.url?scp=85099136739&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.102.123543
DO - 10.1103/PhysRevD.102.123543
M3 - Article
AN - SCOPUS:85099136739
SN - 2470-0010
VL - 102
JO - Physical Review D
JF - Physical Review D
IS - 12
M1 - 123543
ER -