Covalent Immobilization of Aldehyde and Alcohol Dehydrogenases on Ordered Mesoporous Silicas

Giuseppe Pietricola, Melodj Dosa, Carminna Ottone, Debora Fino, Marco Piumetti, Tonia Tommasi

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: This work studies the immobilization of two enzymes, the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (AldDH) both from Saccharomyces cerevisiae, which could be used to produce high value-added molecules from carboxylic acids embedded in anaerobic digestate. Methods: In particular, three mesoporous siliceous materials, with different specific surface areas and pore sizes, (MSU-H, MSU-F and MCF0.75) were used as supports for covalent immobilization. The support materials were characterized by complementary techniques. Then, after a functionalization, creating a covalent bond between the enzyme and the support was performed. The specific activity and immobilization yield of the biocatalysts were then evaluated. Results: The best results were obtained with MSU-H and MSU-F, resulting in an immobilization yield greater than 50% in all cases, a specific activity of 0.13 IU/gsupp with the AldDH/MSU-H, 0.10 IU/gsupp with AldDH/MSU-F, 48.6 IU/gsupp with ADH/MSU-H and 12.6 IU/gsupp with ADH/MSU-H. These biocatalysts were then characterized by optimal pH and temperature and the stability factor was evaluated. With ADH/MSU-F no decrease in activity was observed after 120 h incubated at 50 °C. Finally, the biocatalysts AldDH/MSU-H and ADH/MSU-H were used to perform the reduction reaction and it was seen that after five reaction cycles the residual activity was greater than 20% in both cases. Conclusion: The ADH and AldDH enzymes have been successfully immobilized on mesoporous siliceous supports, considerably increasing their thermal stability and being able to reuse them for several reaction cycles. The use of this immobilization and these supports is adaptable to a wide variety of enzymes. Graphical Abstract: [Figure not available: see fulltext.]

Original languageEnglish
JournalWaste and Biomass Valorization
DOIs
StateAccepted/In press - 2022
Externally publishedYes

Keywords

  • Amino functionalization
  • Covalent immobilization
  • Glyoxyl functionalization
  • Ordered mesoporous silicas
  • Wastewater valorization

Fingerprint

Dive into the research topics of 'Covalent Immobilization of Aldehyde and Alcohol Dehydrogenases on Ordered Mesoporous Silicas'. Together they form a unique fingerprint.

Cite this