TY - JOUR
T1 - Critical evaluation of third-order advantage with highly overlapped spectral signals. Determination of fluoroquinolones in fish-farming waters by fluorescence spectroscopy coupled to multivariate calibration
AU - Osorio, Alicia
AU - Toledo-Neira, Carla
AU - Bravo, Manuel A.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - In this work, the analytical performance of a third-order/four-way calibration is evaluated to model a highly overlapped system, where two spectral dimensions are extremely similar, and the results are then compared with the results of second-order/three-way calibration. The four-way data were obtained during the photodegradation of fluoroquinolones (ciprofloxacin, norfloxacin and flumequine) in the form of excitation-emission matrices and modeled by unfolded partial least squares coupled to residual trilinearization (U-PLS-RTL). According to the results, the model obtained with the second-order algorithm (unfolded partial least squares coupled to residual bilinearization: U-PLS-RBL) was unsatisfactory due to high spectral overlap. The third-order approach obtained a satisfactory fit and better figures of merit (LOD, REP, RMSEP, and sensitivity, among others) even in the presence of unexpected interferences due to third-order advantages. Finally, the analytical method based on third-order multivariate calibration was applied to quantify these fluoroquinolones in spiked fish-farming water samples. In this case, the third-order advantage allowed us to satisfactorily model the data and to quantify these compounds in this complex matrix, demonstrating the superior analytical performance of the high-order data that were evaluated.
AB - In this work, the analytical performance of a third-order/four-way calibration is evaluated to model a highly overlapped system, where two spectral dimensions are extremely similar, and the results are then compared with the results of second-order/three-way calibration. The four-way data were obtained during the photodegradation of fluoroquinolones (ciprofloxacin, norfloxacin and flumequine) in the form of excitation-emission matrices and modeled by unfolded partial least squares coupled to residual trilinearization (U-PLS-RTL). According to the results, the model obtained with the second-order algorithm (unfolded partial least squares coupled to residual bilinearization: U-PLS-RBL) was unsatisfactory due to high spectral overlap. The third-order approach obtained a satisfactory fit and better figures of merit (LOD, REP, RMSEP, and sensitivity, among others) even in the presence of unexpected interferences due to third-order advantages. Finally, the analytical method based on third-order multivariate calibration was applied to quantify these fluoroquinolones in spiked fish-farming water samples. In this case, the third-order advantage allowed us to satisfactorily model the data and to quantify these compounds in this complex matrix, demonstrating the superior analytical performance of the high-order data that were evaluated.
KW - Fish-farming waters
KW - Fluoroquinolones
KW - Third-order multivariate calibration
UR - http://www.scopus.com/inward/record.url?scp=85067232207&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2019.06.048
DO - 10.1016/j.talanta.2019.06.048
M3 - Article
C2 - 31357317
AN - SCOPUS:85067232207
SN - 0039-9140
VL - 204
SP - 438
EP - 445
JO - Talanta
JF - Talanta
ER -