TY - JOUR
T1 - Dietary Inclusion of Hydrolyzed Debaryomyces hansenii Yeasts Modulates Physiological Responses in Plasma and Immune Organs of Atlantic Salmon (Salmo salar) Parr Exposed to Acute Hypoxia Stress
AU - Morales-Lange, Byron
AU - Djordjevic, Brankica
AU - Gaudhaman, Ashwath
AU - Press, Charles Mc Lean
AU - Olson, Jake
AU - Mydland, Liv Torunn
AU - Mercado, Luis
AU - Imarai, Mónica
AU - Castex, Mathieu
AU - Øverland, Margareth
N1 - Publisher Copyright:
Copyright © 2022 Morales-Lange, Djordjevic, Gaudhaman, Press, Olson, Mydland, Mercado, Imarai, Castex and Øverland.
PY - 2022/3/28
Y1 - 2022/3/28
N2 - Stress related to salmon aquaculture practices (handling, sub-optimal nutrition, diseases, and environmental problems) may compromise fish welfare. This study describes the effects of two hydrolyzed Debaryomyces hansenii yeast-based products (LAN4 and LAN6) on physiological and immune responses of Atlantic salmon (Salmo salar) parr exposed to short hypoxia stress. A commercial-like diet (control diet: CD) and two experimental diets (CD supplemented with 0.1% of either component LAN4 or LAN6) were fed to fish for 8 weeks. At the end of the feeding experiment, fish were exposed to 1-min hypoxia and samples were collected at 0, 1, 3, 6, 12, and 24 h post-stress. Results showed that plasma cortisol reached a peak at 1 h post-stress in CD and LAN6 groups, whereas no significant increase in cortisol levels was detected in the LAN4 group. Moreover, the LAN6 group enhanced IL-10 responses to hypoxia, when compared to the control and LAN4 group. This suggests a regulation of immunosuppressive profiles in fish fed LAN4. Hypoxia stress increased TNFα in all groups, which indicates that fish may compensate for the short-term stress response, by modulating innate immune molecules. The apparent suppression of hypoxia responses in the LAN4 group coincided with the detection of differences in goblet cells size and Muc-like proteins production in DI; and upregulation (1 h post-stress) of pathways related to oxygen transport, hemoglobin complex, and glutathione transferase activity and the downregulation of fatty acid metabolism (6 h post-stress) in gills. To conclude, a 1-min hypoxia stress exposure affects the response to stress and immunity; and D. hansenii-based yeast products are promising components in functional aquafeeds for salmon due to their ability to counteract possible consequences of hypoxic stress.
AB - Stress related to salmon aquaculture practices (handling, sub-optimal nutrition, diseases, and environmental problems) may compromise fish welfare. This study describes the effects of two hydrolyzed Debaryomyces hansenii yeast-based products (LAN4 and LAN6) on physiological and immune responses of Atlantic salmon (Salmo salar) parr exposed to short hypoxia stress. A commercial-like diet (control diet: CD) and two experimental diets (CD supplemented with 0.1% of either component LAN4 or LAN6) were fed to fish for 8 weeks. At the end of the feeding experiment, fish were exposed to 1-min hypoxia and samples were collected at 0, 1, 3, 6, 12, and 24 h post-stress. Results showed that plasma cortisol reached a peak at 1 h post-stress in CD and LAN6 groups, whereas no significant increase in cortisol levels was detected in the LAN4 group. Moreover, the LAN6 group enhanced IL-10 responses to hypoxia, when compared to the control and LAN4 group. This suggests a regulation of immunosuppressive profiles in fish fed LAN4. Hypoxia stress increased TNFα in all groups, which indicates that fish may compensate for the short-term stress response, by modulating innate immune molecules. The apparent suppression of hypoxia responses in the LAN4 group coincided with the detection of differences in goblet cells size and Muc-like proteins production in DI; and upregulation (1 h post-stress) of pathways related to oxygen transport, hemoglobin complex, and glutathione transferase activity and the downregulation of fatty acid metabolism (6 h post-stress) in gills. To conclude, a 1-min hypoxia stress exposure affects the response to stress and immunity; and D. hansenii-based yeast products are promising components in functional aquafeeds for salmon due to their ability to counteract possible consequences of hypoxic stress.
KW - RNAseq
KW - blood
KW - distal intestine
KW - gill
KW - immunological markers
KW - short-term stress
KW - yeast-based products
UR - http://www.scopus.com/inward/record.url?scp=85128341711&partnerID=8YFLogxK
U2 - 10.3389/fphys.2022.836810
DO - 10.3389/fphys.2022.836810
M3 - Article
AN - SCOPUS:85128341711
SN - 1664-042X
VL - 13
JO - Frontiers in Physiology
JF - Frontiers in Physiology
M1 - 836810
ER -