Diversity of Root-Associated Fungi of the Terrestrial Orchids Gavilea lutea and Chloraea collicensis in a Temperate Forest Soil of South-Central Chile

Héctor Herrera, Tedy Sanhueza, Rafael Borges da Silva Valadares, Francisco Matus, Guillermo Pereira, Cristian Atala, María de la Luz Mora, Cesar Arriagada

Research output: Contribution to journalArticlepeer-review

Abstract

The diversity of orchid mycorrhizal fungi (OMF) and other beneficial root-associated fungi in temperate forests has scarcely been examined. This study aimed to analyze the diversity of mycorrhizal and rhizosphere-associated fungal communities in the terrestrial orchids Gavilea lutea and Chloraea collicensis growing in high-orchid-population-density areas in the piedmont of the Andes Cordillera with native forest (Nothofagus-Araucaria) and Coastal Cordillera with an exotic plantation (Pinus-Eucalyptus) in south-central Chile. We focused on rhizosphere-inhabiting and peloton-associated OMF in a native forest (Andes Cordillera) and a mixed forest (Coastal Cordillera). The native terrestrial orchids G. lutea and C. collicensis were localized, mycorrhizal root segments were taken to isolate peloton-associated OMF, and rhizosphere soil was taken to perform the metabarcoding approach. The results revealed that Basidiomycota and Ascomycota were the main rhizosphere-inhabiting fungal phyla, showing significant differences in the composition of fungal communities in both sites. Sebacina was the most-abundant OMF genera in the rhizosphere of G. lutea growing in the native forest soil. In contrast, Thanatephorus was the most abundant mycorrhizal taxa growing in the rhizosphere of orchids from the Coastal Cordillera. Besides, other OMF genera such as Inocybe, Tomentella, and Mycena were detected. The diversity of OMF in pelotons differed, being mainly related to Ceratobasidium sp. and Tulasnella sp. These results provide evidence of differences in OMF from pelotons and the rhizosphere soil in G. lutea growing in the Andes Cordillera and a selection of microbial communities in the rhizosphere of C. collicensis in the Coastal Cordillera. This raises questions about the efficiency of propagation strategies based only on mycorrhizal fungi obtained by culture-dependent methods, especially in orchids that depend on non-culturable taxa for seed germination and plantlet development.

Original languageEnglish
Article number794
JournalJournal of Fungi
Volume8
Issue number8
DOIs
StatePublished - Aug 2022
Externally publishedYes

Keywords

  • mycoheterotrophy
  • orchid mycorrhizae
  • Orchidaceae
  • soil fungi
  • symbiosis

Fingerprint

Dive into the research topics of 'Diversity of Root-Associated Fungi of the Terrestrial Orchids Gavilea lutea and Chloraea collicensis in a Temperate Forest Soil of South-Central Chile'. Together they form a unique fingerprint.

Cite this