Abstract
Tailor-made peptides were investigated for site-specific tag labeling of Geobacillus thermocatenulatus lipase (GTL). GTL was first genetically modified by introducing a unique cysteine on the lid site of the enzyme to produce two variants (GTLσ-A193C and GTLσ-S196C). Chemical modification was performed by using a small library of cysteine-containing peptides. The synthesized peptide–lipase biocatalysts were highly stable, more active, more specific, and more selective toward different substrates than unmodified GTL. Very high enzyme thermostability of GTLσ-A193C modified with peptides Ac-Cys-Phe-Gly-Phe-Gly-Phe-CONH 2 (1) and Ac-Cys-Phe-Phe-CONH 2 (2) (>95 % activity after 24 h at 60 °C) was observed. The incorporation of 1 and 2 in GTLσ-S196C improved its catalytic activity in the hydrolysis of p-nitrophenyl butyrate by factors of three and greater than five, respectively. The specificity for short-chain versus long-chain esters was also strongly improved. The diacylglycerol activity of GTLσ-S196C was enhanced more than tenfold by the incorporation of 1 and more than threefold by modification of this variant with Ac-Cys-(Arg) 7 -CONH 2 (6) in the hydrolysis of 1-stearoyl-2-arachidonoyl-sn-glycerol. The enantioselectivity of GTLσ-S196C increased for all formed bioconjugates, and the GTLσ-S196C–1 conjugate was the most active and selective in the hydrolysis of dimethylphenyl glutarate at pH 7 (72 % ee), also showing an inversion in the enzyme enantiopreference.
Original language | English |
---|---|
Pages (from-to) | 369-378 |
Number of pages | 10 |
Journal | ChemBioChem |
Volume | 19 |
Issue number | 4 |
DOIs | |
State | Published - 16 Feb 2018 |
Externally published | Yes |
Keywords
- biocatalysis
- enantioselectivity
- lipases
- peptides
- site-specific modification