TY - JOUR
T1 - Effect of the addition of propolis extract on bioactive compounds and antioxidant activity of craft beer
AU - Ulloa, Pablo A.
AU - Vidal, Juan
AU - Ávila, María I.
AU - Labbe, Mariela
AU - Cohen, Seth
AU - Salazar, Fernando N.
N1 - Publisher Copyright:
© 2017 Pablo A. Ulloa et al.
PY - 2017
Y1 - 2017
N2 - Antioxidant-rich foods and beverages play an essential role in the prevention of diseases. This study assessed the influence of the addition of ethanolic extract of propolis (EEP) to beer at different concentrations (0.05, 0.15, and 0.25 g/L). Total phenolic content (TPC) and total flavonoid content (TFC) were determined. Antioxidant activity (AA) was evaluated by radical scavenging activity (DPPH and ABTS) and reducing power (FRAP). The addition of EEP in beer resulted in a linear increase in the TPC with values of 4.5%, 16.7%, and 26.7% above a control (no EEP added; 242 mg gallic acid equivalent/L). A similar increase was observed with TFC values 16.0%, 49.7%, and 59.2% above the control (16.9 mg quercetin equivalent/L). The FRAP assay indicated linear increases in AA relative to control with values of 1555, 1705, and 1892 μmol Trolox equivalent/L following EEP additions. The incorporation of EEP resulted in increases in the bioactive compounds and AA in beer without altering the physicochemical parameters of golden ale beer. The results indicate a promising use of propolis extract as a functional ingredient in beer.
AB - Antioxidant-rich foods and beverages play an essential role in the prevention of diseases. This study assessed the influence of the addition of ethanolic extract of propolis (EEP) to beer at different concentrations (0.05, 0.15, and 0.25 g/L). Total phenolic content (TPC) and total flavonoid content (TFC) were determined. Antioxidant activity (AA) was evaluated by radical scavenging activity (DPPH and ABTS) and reducing power (FRAP). The addition of EEP in beer resulted in a linear increase in the TPC with values of 4.5%, 16.7%, and 26.7% above a control (no EEP added; 242 mg gallic acid equivalent/L). A similar increase was observed with TFC values 16.0%, 49.7%, and 59.2% above the control (16.9 mg quercetin equivalent/L). The FRAP assay indicated linear increases in AA relative to control with values of 1555, 1705, and 1892 μmol Trolox equivalent/L following EEP additions. The incorporation of EEP resulted in increases in the bioactive compounds and AA in beer without altering the physicochemical parameters of golden ale beer. The results indicate a promising use of propolis extract as a functional ingredient in beer.
UR - http://www.scopus.com/inward/record.url?scp=85042352131&partnerID=8YFLogxK
U2 - 10.1155/2017/6716053
DO - 10.1155/2017/6716053
M3 - Article
AN - SCOPUS:85042352131
SN - 2090-9063
VL - 2017
JO - Journal of Chemistry
JF - Journal of Chemistry
M1 - 6716053
ER -