Effects of variable equations of state on the stability of nonlinear electrodynamics thin-shell wormholes

Faisal Javed, G. Fatima, G. Mustafa, Ali Övgün

Research output: Contribution to journalArticlepeer-review

Abstract

This paper explores the role of nonlinear electrodynamics on the stable configuration of thin-shell wormholes formulated from two equivalent geometries of Reissner-Nordström black hole with nonlinear electrodynamics. For this purpose, we use cut and paste approach to eliminate the central singularity and event horizons of the black hole geometry. Then, we explore the stability of the developed model by considering different types of matter distribution located at thin-shell, i.e. barotropic model and variable equations of state (phantomlike variable and Chaplygin variable models). We use linearized radial perturbation to explore the stable characteristics of thin-shell wormholes. It is interesting to mention that Schwarzschild and Reissner-Nordström black holes show the unstable configuration for such type of matter distribution while Reissner-Nordström black hole with nonlinear electrodynamics expresses stable regions. It is found that the presence of nonlinear electrodynamics gives the possibility of a stable structure for barotropic as well as variable models. It is concluded that stable region increases for these models by considering higher negative values of coupling constant α and the real constant n.

Original languageEnglish
Article number2350010
JournalInternational Journal of Geometric Methods in Modern Physics
DOIs
StateAccepted/In press - 2022
Externally publishedYes

Keywords

  • Israel formalism
  • nonlinear electrodynamics
  • stability analysis
  • Thin-shell wormholes

Fingerprint

Dive into the research topics of 'Effects of variable equations of state on the stability of nonlinear electrodynamics thin-shell wormholes'. Together they form a unique fingerprint.

Cite this