Electrosynthesis and electrochemical characterization of a thin phase of CuxS (x ← 2) on ITO electrode

Ricardo Córdova, Humberto Gómez, Ricardo Schrebler, Paula Cury, Marco Orellana, PAULA CAROLINA GREZ MORENO, Dietmar Leinen, José Ramón Ramos-Barrado, Rodrigo Del Río

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

CuxS (x ← 2) thin films were obtained by sulfidization of copper thin films previously obtained by spin-coating from a dichloromethane solution of [Cu(II)(2-ethyl hexanoate)2(H2O)2] deposited on ITO substrate, irradiated with UV light and electrochemically reduced. Through cyclic voltammetry experiences performed in a 0.05 M Na2B4O7 buffer solution containing 5 mM Na2S, the electroformation mechanism of CuxS phase is controlled by a first electron transfer, obtaining an initial formation of Cu(HS)ads that evolves to a CuxS phase. Potentiostatic current transient recorded in the potential range of -0.8 V ≤ E ≤ -0.7 V showed that the nucleation and growth mechanism of the CuxS phase obeys a two-dimensional instantaneous process with diffusional and charge-transfer contributions. AFM analysis of the deposits shows that CuxS phase is preferentially deposited in the valleys left by ITO particles. The average size of CuxS particles is close to 20 nm. Cyclic voltammetry results, electromotive force determination in the Cu/Cuaq2+/CuxS galvanic cell, EDAX, and UV analysis demonstrate that the stoichiometric factor x in Cux is close to 2. The electro-obtained CuxS phase was unstable and evolved to other nonstoichiometric compounds at open circuit. The processes responsible for the instability were the own oxidation of CuxS phase and the water reduction that takes place over CuxS and bare ITO particles. The last process was studied by electrochemical impedance spectroscopy. Photoelectrochemical measurements in the stability potential range of the CuxS phase shows that the electro-obtained phase presents a p-type conductivity.

Original languageEnglish
Pages (from-to)8647-8654
Number of pages8
JournalLangmuir
Volume18
Issue number22
DOIs
StatePublished - 29 Oct 2002
Externally publishedYes

Fingerprint Dive into the research topics of 'Electrosynthesis and electrochemical characterization of a thin phase of Cu<sub>x</sub>S (x ← 2) on ITO electrode'. Together they form a unique fingerprint.

Cite this