TY - JOUR
T1 - Enzymatic Synthesis of Ascorbyl Palmitate in a Rotating Bed Reactor
AU - Holtheuer, Jessica
AU - Tavernini, Luigi
AU - Bernal, Claudia
AU - Romero, Oscar
AU - Ottone, Carminna
AU - Wilson, Lorena
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/1
Y1 - 2023/1
N2 - Ascorbyl palmitate, an ascorbic acid ester, is an important amphipathic antioxidant that has several applications in foods, pharmaceuticals, and cosmetics. The enzymatic synthesis of ascorbyl palmitate is very attractive, but few efforts have been made to address its process scale-up and implementation. This study aimed at evaluating the enzymatic synthesis of ascorbyl palmitate in a rotating basket reactor operated in sequential batches. Different commercial immobilized lipases were tested, and the most suitable reaction conditions were established. Among those lipases studied were Amano Lipase PS, Lipozyme® TL IM, Lipozyme® Novo 40086, Lipozyme® RM IM and Lipozyme® 435. Initially, the enzymes were screened based on previously defined synthesis conditions, showing clear differences in behavior. Lipozyme® 435 proved to be the best catalyst, reaching the highest values of initial reaction rate and yield. Therefore, it was selected for the following studies. Among the solvents assayed, 2-methyl-2-butanol and acetone showed the highest yields, but the operational stability of the catalyst was better in 2-methyl-2-butanol. The tests in a basket reactor showed great potential for large-scale application. Yields remained over 80% after four sequential batches, and the basket allowed for easy catalyst recycling. The results obtained in basket reactor are certainly a contribution to the enzymatic synthesis of ascorbyl palmitate as a competitive alternative to chemical synthesis. This may inspire future cost-effectiveness studies of the process to assess its potential as a viable alternative to be implemented.
AB - Ascorbyl palmitate, an ascorbic acid ester, is an important amphipathic antioxidant that has several applications in foods, pharmaceuticals, and cosmetics. The enzymatic synthesis of ascorbyl palmitate is very attractive, but few efforts have been made to address its process scale-up and implementation. This study aimed at evaluating the enzymatic synthesis of ascorbyl palmitate in a rotating basket reactor operated in sequential batches. Different commercial immobilized lipases were tested, and the most suitable reaction conditions were established. Among those lipases studied were Amano Lipase PS, Lipozyme® TL IM, Lipozyme® Novo 40086, Lipozyme® RM IM and Lipozyme® 435. Initially, the enzymes were screened based on previously defined synthesis conditions, showing clear differences in behavior. Lipozyme® 435 proved to be the best catalyst, reaching the highest values of initial reaction rate and yield. Therefore, it was selected for the following studies. Among the solvents assayed, 2-methyl-2-butanol and acetone showed the highest yields, but the operational stability of the catalyst was better in 2-methyl-2-butanol. The tests in a basket reactor showed great potential for large-scale application. Yields remained over 80% after four sequential batches, and the basket allowed for easy catalyst recycling. The results obtained in basket reactor are certainly a contribution to the enzymatic synthesis of ascorbyl palmitate as a competitive alternative to chemical synthesis. This may inspire future cost-effectiveness studies of the process to assess its potential as a viable alternative to be implemented.
KW - ascorbyl palmitate
KW - enzymatic synthesis
KW - lipase
KW - rotating bed reactor
UR - http://www.scopus.com/inward/record.url?scp=85146806008&partnerID=8YFLogxK
U2 - 10.3390/molecules28020644
DO - 10.3390/molecules28020644
M3 - Article
C2 - 36677702
AN - SCOPUS:85146806008
SN - 1420-3049
VL - 28
JO - Molecules
JF - Molecules
IS - 2
M1 - 644
ER -