TY - JOUR
T1 - Flocculation of Clay-Based Tailings
T2 - Differences of Kaolin and Sodium Montmorillonite in Salt Medium
AU - Nieto, Steven
AU - Toro, Norman
AU - Robles, Pedro
AU - Gálvez, Edelmira
AU - Gallegos, Sandra
AU - Jeldres, Ricardo I.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Complex gangues and low-quality waters are a concern for the mining industries, particularly in water shortage areas, where the closure of hydric circuits and reduction in water use are essential to maintain the economic and environmental sustainability of mineral processing. This study analyzes the phenomena involved in the water recovery stage, such as sedimentation of claybased tailings flocculated with anionic polyelectrolyte in industrial water and seawater. Floccula-tion–sedimentation batch tests were performed to ascertain the aggregate size distribution, the hindered settling rate, and the structure of flocs expressed through their fractal dimension and density. The aggregates’ properties were characterized by the Focused Beam Reflectance Measurement (FBRM) and Particle Vision Microscope (PVM) techniques. The impact of the type of water depends on the type of clay that constitutes the suspension. For quartz/kaolin, the highest performance was obtained in industrial water, with bigger aggregates and faster settling rates. However, the tailings composed of quartz/Na-montmorillonite reversed this trend. The type of water impacted the efficiency of primary-particle aggregation. The trials in industrial water generated a portion of non-flocculated particles, which was observed through a bimodal distribution in the unweighted chordlength distribution. This behavior was not observed in seawater, where a perceptible fraction of non-flocculated particles was not found. The additional cationic bonds that offer seawater favor finer primary-particle agglomeration for all tailings types.
AB - Complex gangues and low-quality waters are a concern for the mining industries, particularly in water shortage areas, where the closure of hydric circuits and reduction in water use are essential to maintain the economic and environmental sustainability of mineral processing. This study analyzes the phenomena involved in the water recovery stage, such as sedimentation of claybased tailings flocculated with anionic polyelectrolyte in industrial water and seawater. Floccula-tion–sedimentation batch tests were performed to ascertain the aggregate size distribution, the hindered settling rate, and the structure of flocs expressed through their fractal dimension and density. The aggregates’ properties were characterized by the Focused Beam Reflectance Measurement (FBRM) and Particle Vision Microscope (PVM) techniques. The impact of the type of water depends on the type of clay that constitutes the suspension. For quartz/kaolin, the highest performance was obtained in industrial water, with bigger aggregates and faster settling rates. However, the tailings composed of quartz/Na-montmorillonite reversed this trend. The type of water impacted the efficiency of primary-particle aggregation. The trials in industrial water generated a portion of non-flocculated particles, which was observed through a bimodal distribution in the unweighted chordlength distribution. This behavior was not observed in seawater, where a perceptible fraction of non-flocculated particles was not found. The additional cationic bonds that offer seawater favor finer primary-particle agglomeration for all tailings types.
KW - Clay-based tailings
KW - Fractal aggregates
KW - Kaolin and Na-montmorillonite
KW - Mineral processing
KW - Seawater flocculation
UR - http://www.scopus.com/inward/record.url?scp=85124042437&partnerID=8YFLogxK
U2 - 10.3390/ma15031156
DO - 10.3390/ma15031156
M3 - Article
AN - SCOPUS:85124042437
SN - 1996-1944
VL - 15
JO - Materials
JF - Materials
IS - 3
M1 - 1156
ER -