Globalization of supercuspidal representations over function fields and applications

Wee Teck Gan, Luis Lomelí

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Let H be a connected reductive group defined over a non-archimedean local field F of characteristic p > 0. Using Poincaré series, we globalize supercuspidal representations of HF in such a way that we have control over ramification at all other places, and such that the notion of distinction with respect to a unipotent subgroup (indeed more general subgroups) is preserved. In combination with the work of Vincent Lafforgue on the global Langlands correspondence, we present some applications, such as the stability of Langlands-Shahidi γ -factors and the local Langlands correspondence for classical groups.

Original languageEnglish
Pages (from-to)2813-2858
Number of pages46
JournalJournal of the European Mathematical Society
Issue number11
StatePublished - 2018


  • Function fields
  • Globalization
  • Local Langlands correspondence
  • Supercuspidal representations


Dive into the research topics of 'Globalization of supercuspidal representations over function fields and applications'. Together they form a unique fingerprint.

Cite this