TY - GEN
T1 - Heavy metals immobilization in contaminated smelter soils using microbial sulphate reduction
AU - Almendras, M.
AU - Wiertz, J. V.
AU - Chamy, R.
PY - 2009
Y1 - 2009
N2 - The main environmental problems associated with the mining activities are related to the production of large amounts of wastes; Different pathways are responsible for heavy metals dispersion, by air due to wind action, by water mediated by acid mine drainage and erosion, and the metals could be mobilized in the soil by different transport mechanisms. Different remediation alternatives have been studied and reported in literature. In situ stabilization is a cheaper method. The heavy metals stabilization enables the decrease of metal mobility, reactivity and toxicity in the soil, decreasing heavy metals availability and phytoavailability. Sulphate reducing bacteria (SRB) have been successfully utilized in groundwater bioprecipitation of heavy metals. In this study, this biological agent has been used in the immobilization of heavy metal in the subsurface of the soil due to its dissimilative metabolism. SRB produces hydrogen sulfide that reacts with soluble metals present in the media, generating as final product low soluble metal compounds (metal sulfides). The bio-stabilization was studied at pilot scale to determine the stabilization efficiency using biological agent, SRB. The metals studied were Fe, Cu, Pb and Zn in the contaminated smelter soil. Bioaugmentation and biomagnification were applied. After 4 months, the metal stabilization efficiency was determined by leaching with acid solution at different pH to stimulate the metal mobility. The remediation pilot scale system showed that copper, lead and iron were much more stable at pH 3.0, with only 3.7% and 1% of total metal eluted, and compared with the system without biological agent. In the case of zinc, the elution was similar with or without remediation. The metal stabilization using biological agent was successful in the contaminated smelter soil and these results are promising antecedents for full scale in situ remediation strategy.
AB - The main environmental problems associated with the mining activities are related to the production of large amounts of wastes; Different pathways are responsible for heavy metals dispersion, by air due to wind action, by water mediated by acid mine drainage and erosion, and the metals could be mobilized in the soil by different transport mechanisms. Different remediation alternatives have been studied and reported in literature. In situ stabilization is a cheaper method. The heavy metals stabilization enables the decrease of metal mobility, reactivity and toxicity in the soil, decreasing heavy metals availability and phytoavailability. Sulphate reducing bacteria (SRB) have been successfully utilized in groundwater bioprecipitation of heavy metals. In this study, this biological agent has been used in the immobilization of heavy metal in the subsurface of the soil due to its dissimilative metabolism. SRB produces hydrogen sulfide that reacts with soluble metals present in the media, generating as final product low soluble metal compounds (metal sulfides). The bio-stabilization was studied at pilot scale to determine the stabilization efficiency using biological agent, SRB. The metals studied were Fe, Cu, Pb and Zn in the contaminated smelter soil. Bioaugmentation and biomagnification were applied. After 4 months, the metal stabilization efficiency was determined by leaching with acid solution at different pH to stimulate the metal mobility. The remediation pilot scale system showed that copper, lead and iron were much more stable at pH 3.0, with only 3.7% and 1% of total metal eluted, and compared with the system without biological agent. In the case of zinc, the elution was similar with or without remediation. The metal stabilization using biological agent was successful in the contaminated smelter soil and these results are promising antecedents for full scale in situ remediation strategy.
KW - Biostabilization
KW - Contaminated smelter soil
KW - Heavy metals (Fe, Cu, Pb, Zn)
KW - Sulphate reducing bacteria
UR - http://www.scopus.com/inward/record.url?scp=72449131358&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.71-73.577
DO - 10.4028/www.scientific.net/AMR.71-73.577
M3 - Conference contribution
AN - SCOPUS:72449131358
SN - 0878493220
SN - 9780878493227
T3 - Advanced Materials Research
SP - 577
EP - 580
BT - Biohydrometallurgy 2009
T2 - 18th International Biohydrometallurgy Symposium, IBS 2009
Y2 - 13 September 2009 through 17 September 2009
ER -