Leaching chalcopyrite with high MnO2 and chloride concentrations

David Torres, Luís Ayala, Ricardo I. Jeldres, Eduardo Cerecedo‐sáenz, Eleazar Salinas‐rodríguez, Pedro Robles, Norman Toro

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Most copper minerals are found as sulfides, with chalcopyrite being the most abundant. However; this ore is refractory to conventional hydrometallurgical methods, so it has been historically exploited through froth flotation, followed by smelting operations. This implies that the processing involves polluting activities, either by the formation of tailings dams and the emission of large amounts of SO2 into the atmosphere. Given the increasing environmental restrictions, it is necessary to consider new processing strategies, which are compatible with the environment, and, if feasible, combine the reuse of industrial waste. In the present research, the dissolution of pure chalcopyrite was studied considering the use of MnO2 and wastewater with a high chloride content. Fine particles (−20 μm) generated an increase in extraction of copper from the mineral. Besides, it was discovered that working at high temperatures (80 °C); the large concentrations of MnO2 become irrelevant. The biggest copper extractions of this work (71%) were achieved when operating at 80 °C; particle size of −47 + 38 μm, MnO2/CuFeS2 ratio of 5/1, and 1 mol/L of H2SO4.

Original languageEnglish
Article number107
JournalMetals
Volume10
Issue number1
DOIs
StatePublished - Jan 2020

Keywords

  • Chloride media
  • CuFeS2
  • Dissolution
  • Manganese nodules

Fingerprint

Dive into the research topics of 'Leaching chalcopyrite with high MnO2 and chloride concentrations'. Together they form a unique fingerprint.

Cite this