TY - JOUR
T1 - Leaching of pure chalcocite in a chloride media using waste water at high temperature
AU - Pérez, Kevin
AU - Jeldres, Ricardo I.
AU - Nieto, Steven
AU - Salinas-Rodríguez, Eleazar
AU - ROBLES VASQUEZ, PEDRO ADRIAN
AU - Quezada, Víctor
AU - Hernández-ávila, Juan
AU - Toro, Norman
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/3
Y1 - 2020/3
N2 - Studying the dissolution of chalcocite allows to understand the behavior of the most abundant secondary sulfide ore in copper deposits, while digenite (Cu1.8S) and other intermediate sulfides (Cu2−xS) are often associated with chalcocite. The most common mechanism of dissolution is by two stages, and chloride ions benefit the kinetics of dissolution. In this study, a pure chalcocite mineral (99.9% according to XRD (X-Ray Diffraction) analysis) is leached in chloride media using NaCl and wastewater as the sources of chloride. Magnetic leaching tests are performed at 65, 75, and 95 °C, using a particle size between −150 and + 106 μm. Chloride concentration and leaching time are the main variables. A substantial dissolution of chalcocite was obtained with 0.5 M H2SO4, 100 g/L of chloride and a leaching time of 3 h. The apparent activation energy (Ea) derived from the slopes of the Arrhenius plots was 36 kJ/mol. The XRD analysis proves the presence of elemental sulfur (S0) as the main component in the leaching residue. No significant differences in copper extraction were detected when using 100 g/L of chloride ion or wastewater (39 g/L).
AB - Studying the dissolution of chalcocite allows to understand the behavior of the most abundant secondary sulfide ore in copper deposits, while digenite (Cu1.8S) and other intermediate sulfides (Cu2−xS) are often associated with chalcocite. The most common mechanism of dissolution is by two stages, and chloride ions benefit the kinetics of dissolution. In this study, a pure chalcocite mineral (99.9% according to XRD (X-Ray Diffraction) analysis) is leached in chloride media using NaCl and wastewater as the sources of chloride. Magnetic leaching tests are performed at 65, 75, and 95 °C, using a particle size between −150 and + 106 μm. Chloride concentration and leaching time are the main variables. A substantial dissolution of chalcocite was obtained with 0.5 M H2SO4, 100 g/L of chloride and a leaching time of 3 h. The apparent activation energy (Ea) derived from the slopes of the Arrhenius plots was 36 kJ/mol. The XRD analysis proves the presence of elemental sulfur (S0) as the main component in the leaching residue. No significant differences in copper extraction were detected when using 100 g/L of chloride ion or wastewater (39 g/L).
KW - Desalination water
KW - Reusing water
KW - Sulfide leaching
KW - Waste water
UR - http://www.scopus.com/inward/record.url?scp=85082122597&partnerID=8YFLogxK
U2 - 10.3390/met10030384
DO - 10.3390/met10030384
M3 - Article
AN - SCOPUS:85082122597
VL - 10
JO - Metals
JF - Metals
SN - 2075-4701
IS - 3
M1 - 384
ER -