Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory

Kimet Jusufi, Ali Övgün, Ayan Banerjee

Research output: Contribution to journalArticlepeer-review

82 Scopus citations


In this paper, we study the deflection of light by a class of charged wormholes within the context of the Einstein-Maxwell-dilaton theory. The primordial wormholes are predicted to exist in the early universe, where inflation is driven by the dilaton field. We perform our analysis through optical geometry using the Gibbons-Werner method (GW) by adopting the Gauss-Bonnet theorem and the standard geodesics approach. We report an interesting result for the deflection angle in leading-order terms - namely, the deflection angle increases due to the electric charge Q and the magnetic charge P, whereas it decreases due to the dilaton charge Σ. Finally, we confirm our findings by means of geodesics equations. Our computations show that the GW method gives an exact result in leading-order terms.

Original languageEnglish
Article number084036
JournalPhysical Review D
Issue number8
StatePublished - 15 Oct 2017


Dive into the research topics of 'Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory'. Together they form a unique fingerprint.

Cite this