TY - JOUR
T1 - Low impact and fuel efficient fishing-Looking beyond the horizon
AU - Suuronen, Petri
AU - Chopin, Francis
AU - Glass, Christopher
AU - Løkkeborg, Svein
AU - Matsushita, Yoshiki
AU - Queirolo, Dante
AU - Rihan, Dominic
PY - 2012/5
Y1 - 2012/5
N2 - Fishing provides high quality seafood and creates employment and income for people worldwide. Most of the capture methods used for fishing are, however, heavily dependent on the use of fossil fuels. For many important fisheries their high consumption of fuel constitutes a major constraint to their economic viability but also represents a significant source of greenhouse gas emissions. In addition, fishing activities can sometimes impact the marine environments through excessive removals of ecologically and economically valuable species and also by direct physical contact with critical habitats. Fishing practices and gears vary widely in their environmental impacts and fuel efficiency but, in general, the impacts of passive fishing gears such as pots, traps, and hooks are considered to be less severe, and the amounts of fuel required per kg of catch smaller, than for towed gears such as beam trawls, dredges and the many types of bottom trawls. Through technological improvements and behavioral changes, the fishing sector can substantially decrease the damage to aquatic ecosystems, reduce emissions and lower its fuel costs. Changes in fishing practices can result in more economical and sustainable fisheries thereby contributing to improved food security. Barriers to begin transition to the use of low-impact, less fuel-intensive practices and gears include a perception that cost-efficient and practical alternatives are not available; restricted access to capital; ineffective technology infrastructure support; and inflexible fisheries management systems that restrict the rapid development and uptake of alternative gears. This paper discusses some of the key capture technologies and identifies gaps, constraints, and opportunities that facilitate the development and adoption of Low Impact and Fuel Efficient (LIFE) Fishing. LIFE fishing addresses the complex dynamic of energy consumption and environmental impacts with the objective of improving the economic viability and environmental sustainability of fishing operations.
AB - Fishing provides high quality seafood and creates employment and income for people worldwide. Most of the capture methods used for fishing are, however, heavily dependent on the use of fossil fuels. For many important fisheries their high consumption of fuel constitutes a major constraint to their economic viability but also represents a significant source of greenhouse gas emissions. In addition, fishing activities can sometimes impact the marine environments through excessive removals of ecologically and economically valuable species and also by direct physical contact with critical habitats. Fishing practices and gears vary widely in their environmental impacts and fuel efficiency but, in general, the impacts of passive fishing gears such as pots, traps, and hooks are considered to be less severe, and the amounts of fuel required per kg of catch smaller, than for towed gears such as beam trawls, dredges and the many types of bottom trawls. Through technological improvements and behavioral changes, the fishing sector can substantially decrease the damage to aquatic ecosystems, reduce emissions and lower its fuel costs. Changes in fishing practices can result in more economical and sustainable fisheries thereby contributing to improved food security. Barriers to begin transition to the use of low-impact, less fuel-intensive practices and gears include a perception that cost-efficient and practical alternatives are not available; restricted access to capital; ineffective technology infrastructure support; and inflexible fisheries management systems that restrict the rapid development and uptake of alternative gears. This paper discusses some of the key capture technologies and identifies gaps, constraints, and opportunities that facilitate the development and adoption of Low Impact and Fuel Efficient (LIFE) Fishing. LIFE fishing addresses the complex dynamic of energy consumption and environmental impacts with the objective of improving the economic viability and environmental sustainability of fishing operations.
KW - Alternative gear
KW - Barriers to transition
KW - Bycatch
KW - Ecosystem impact
KW - Fuel efficiency
KW - Operational improvement
KW - Sustainable fishing practices
UR - http://www.scopus.com/inward/record.url?scp=84857922059&partnerID=8YFLogxK
U2 - 10.1016/j.fishres.2011.12.009
DO - 10.1016/j.fishres.2011.12.009
M3 - Review article
AN - SCOPUS:84857922059
SN - 0165-7836
VL - 119-120
SP - 135
EP - 146
JO - Fisheries Research
JF - Fisheries Research
ER -