TY - JOUR
T1 - Model Predictive Control Scheme of a Four-Level Quasi-Nested Converter Fed AC-Drive, with dc-Link Voltage-Drift Compensation
AU - Reusser, Carlos A.
AU - Herrera, Ramón
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - In this paper, a Model Predictive Control (MPC) strategy is introduced for its application in a four-level quasi-nested topology, feeding an Interior Permanent Magnet Synchronous Machine (IPMSM) AC-drive. The proposed control strategy is capable to synthesize the required output space vectors to ensure perfect tracking of the AC-drive speed reference under different loading conditions, while also ensuring voltage balance between the dc-link capacitors. The proposed converter topology is based on a reduced number of components compared to other mature converter topologies, such as the neutral-point clamped converter (NPC) or the active neutral-point clamped converter (ANPC) topologies, when compared in terms of the number of output voltage levels, since this quasi-nested topology does not require passive clamping devices such as diodes or active switches. Moreover, no floating dc-link capacitors with asymmetrical voltage levels are employed, thus simplifying the dc-link capacitor voltage balance mechanism. This work presents the switching operation principles and MPC control law when supplying an IPMSM AC-drive load are addressed in detail. Simulation and validation results using a Hardware in the Loop (HIL) prototype under different operation conditions are presented in order to validate the proposed converter topology and control strategy.
AB - In this paper, a Model Predictive Control (MPC) strategy is introduced for its application in a four-level quasi-nested topology, feeding an Interior Permanent Magnet Synchronous Machine (IPMSM) AC-drive. The proposed control strategy is capable to synthesize the required output space vectors to ensure perfect tracking of the AC-drive speed reference under different loading conditions, while also ensuring voltage balance between the dc-link capacitors. The proposed converter topology is based on a reduced number of components compared to other mature converter topologies, such as the neutral-point clamped converter (NPC) or the active neutral-point clamped converter (ANPC) topologies, when compared in terms of the number of output voltage levels, since this quasi-nested topology does not require passive clamping devices such as diodes or active switches. Moreover, no floating dc-link capacitors with asymmetrical voltage levels are employed, thus simplifying the dc-link capacitor voltage balance mechanism. This work presents the switching operation principles and MPC control law when supplying an IPMSM AC-drive load are addressed in detail. Simulation and validation results using a Hardware in the Loop (HIL) prototype under different operation conditions are presented in order to validate the proposed converter topology and control strategy.
KW - AC drive
KW - Dc-link balance mechanism
KW - Model predictive control
KW - Multilevel converter
KW - Permanent magnet synchronous machine
KW - Quasi-nested converter
KW - Reduced switching devices topology
UR - http://www.scopus.com/inward/record.url?scp=85123112470&partnerID=8YFLogxK
U2 - 10.3390/electronics11030333
DO - 10.3390/electronics11030333
M3 - Article
AN - SCOPUS:85123112470
SN - 2079-9292
VL - 11
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 3
M1 - 333
ER -