TY - JOUR
T1 - Multi-objective robust optimization using a postoptimality sensitivity analysis technique
T2 - Application to a wind turbine design
AU - Wang, Weijun
AU - Caro, Stéphane
AU - Bennis, Fouad
AU - Soto, Ricardo
AU - Crawford, Broderick
N1 - Publisher Copyright:
Copyright VC 2015 by ASME.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Toward a multi-objective optimization robust problem, the variations in design variables (DVs) and design environment parameters (DEPs) include the small variations and the large variations. The former have small effect on the performance functions and/or the constraints, and the latter refer to the ones that have large effect on the performance functions and/or the constraints. The robustness of performance functions is discussed in this paper. A postoptimality sensitivity analysis technique for multi-objective robust optimization problems (MOROPs) is discussed, and two robustness indices (RIs) are introduced. The first one considers the robustness of the performance functions to small variations in the DVs and the DEPs. The second RI characterizes the robustness of the performance functions to large variations in the DEPs. It is based on the ability of a solution to maintain a good Pareto ranking for different DEPs due to large variations. The robustness of the solutions is treated as vectors in the robustness function space (RF-Space), which is defined by the two proposed RIs. As a result, the designer can compare the robustness of all Pareto optimal solutions and make a decision. Finally, two illustrative examples are given to highlight the contributions of this paper. The first example is about a numerical problem, whereas the second problem deals with the multi-objective robust optimization design of a floating wind turbine.
AB - Toward a multi-objective optimization robust problem, the variations in design variables (DVs) and design environment parameters (DEPs) include the small variations and the large variations. The former have small effect on the performance functions and/or the constraints, and the latter refer to the ones that have large effect on the performance functions and/or the constraints. The robustness of performance functions is discussed in this paper. A postoptimality sensitivity analysis technique for multi-objective robust optimization problems (MOROPs) is discussed, and two robustness indices (RIs) are introduced. The first one considers the robustness of the performance functions to small variations in the DVs and the DEPs. The second RI characterizes the robustness of the performance functions to large variations in the DEPs. It is based on the ability of a solution to maintain a good Pareto ranking for different DEPs due to large variations. The robustness of the solutions is treated as vectors in the robustness function space (RF-Space), which is defined by the two proposed RIs. As a result, the designer can compare the robustness of all Pareto optimal solutions and make a decision. Finally, two illustrative examples are given to highlight the contributions of this paper. The first example is about a numerical problem, whereas the second problem deals with the multi-objective robust optimization design of a floating wind turbine.
UR - http://www.scopus.com/inward/record.url?scp=84929590803&partnerID=8YFLogxK
U2 - 10.1115/1.4028755
DO - 10.1115/1.4028755
M3 - Article
AN - SCOPUS:84929590803
SN - 1050-0472
VL - 137
JO - Journal of Mechanical Design, Transactions of the ASME
JF - Journal of Mechanical Design, Transactions of the ASME
IS - 1
M1 - 011403
ER -