TY - JOUR
T1 - On (non-)dynamical dark energy
AU - Zimdahl, Winfried
AU - Fabris, Júlio C.
AU - Velten, Hermano
AU - Herrera, Ramón
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - The current Universe is composed by a mixture of relativistic species, baryonic matter, dark matter and dark energy which evolve in a non-trivial way at perturbative level. An advanced description of the cosmological dynamics should include non-standard features beyond the simplistic approach idealized by the standard cosmology in which cosmic components do not interact, are adiabatic and dissipationless. We promote a full perturbative analysis of linear scalar perturbations of a non-interacting cosmological model containing baryons, dark matter (both pressureless) and a scalar field allowing for the presence of relative entropic perturbations between the three fluids. Assuming an effective scalar-field sound speed equal to one and neglecting anisotropic stresses we establish a new set of equations for the scalar cosmological perturbations. As a consequence of this new approach, we show that tiny departures from a constant scalar field equation of state wS=−1 damage structure formation in a non-acceptable manner. Hence, by strongly constraining wS our results provide compelling evidence in favor of the standard cosmological model and rule out a large class of dynamical dark energy models.
AB - The current Universe is composed by a mixture of relativistic species, baryonic matter, dark matter and dark energy which evolve in a non-trivial way at perturbative level. An advanced description of the cosmological dynamics should include non-standard features beyond the simplistic approach idealized by the standard cosmology in which cosmic components do not interact, are adiabatic and dissipationless. We promote a full perturbative analysis of linear scalar perturbations of a non-interacting cosmological model containing baryons, dark matter (both pressureless) and a scalar field allowing for the presence of relative entropic perturbations between the three fluids. Assuming an effective scalar-field sound speed equal to one and neglecting anisotropic stresses we establish a new set of equations for the scalar cosmological perturbations. As a consequence of this new approach, we show that tiny departures from a constant scalar field equation of state wS=−1 damage structure formation in a non-acceptable manner. Hence, by strongly constraining wS our results provide compelling evidence in favor of the standard cosmological model and rule out a large class of dynamical dark energy models.
UR - http://www.scopus.com/inward/record.url?scp=85088044485&partnerID=8YFLogxK
U2 - 10.1016/j.dark.2020.100681
DO - 10.1016/j.dark.2020.100681
M3 - Article
AN - SCOPUS:85088044485
SN - 2212-6864
VL - 30
JO - Physics of the Dark Universe
JF - Physics of the Dark Universe
M1 - 100681
ER -