TY - JOUR
T1 - Phenotype-specific estimation of metabolic fluxes using gene expression data
AU - González-Arrué, Nicolás
AU - Inostroza, Isidora
AU - Conejeros, Raúl
AU - Rivas-Astroza, Marcelo
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/3/17
Y1 - 2023/3/17
N2 - A cell's genome influences its metabolism via the expression of enzyme-related genes, but transcriptome and fluxome are not perfectly correlated as post-transcriptional mechanisms also regulate reaction's kinetics. Here, we addressed the question: given a transcriptome, how unobserved mechanisms of reaction kinetics should be systematically accounted for when inferring the fluxome? To infer the most likely and least biased fluxome, we present Pheflux, a constraint-based model maximizing Shannon's entropy of fluxes per mRNA. Benchmarked against 13C fluxes of yeast and bacteria, Pheflux accurately estimates the carbon core metabolism. We applied Pheflux to thousands of normal and tumor cell transcriptomes obtained from The Cancer Genome Atlas. Pheflux showed statistically significantly higher glucose yields on lactate in breast, kidney, and bronchus-lung tumoral cells than their normal counterparts. Results are consistent with the Warburg effect, a hallmark of cancer metabolism, suggesting that Pheflux can be efficiently used to study the metabolism of eukaryotic cells.
AB - A cell's genome influences its metabolism via the expression of enzyme-related genes, but transcriptome and fluxome are not perfectly correlated as post-transcriptional mechanisms also regulate reaction's kinetics. Here, we addressed the question: given a transcriptome, how unobserved mechanisms of reaction kinetics should be systematically accounted for when inferring the fluxome? To infer the most likely and least biased fluxome, we present Pheflux, a constraint-based model maximizing Shannon's entropy of fluxes per mRNA. Benchmarked against 13C fluxes of yeast and bacteria, Pheflux accurately estimates the carbon core metabolism. We applied Pheflux to thousands of normal and tumor cell transcriptomes obtained from The Cancer Genome Atlas. Pheflux showed statistically significantly higher glucose yields on lactate in breast, kidney, and bronchus-lung tumoral cells than their normal counterparts. Results are consistent with the Warburg effect, a hallmark of cancer metabolism, suggesting that Pheflux can be efficiently used to study the metabolism of eukaryotic cells.
KW - Cellular physiology
KW - Complex system biology
KW - Omics
KW - Transcriptomics
UR - http://www.scopus.com/inward/record.url?scp=85149248812&partnerID=8YFLogxK
U2 - 10.1016/j.isci.2023.106201
DO - 10.1016/j.isci.2023.106201
M3 - Article
AN - SCOPUS:85149248812
SN - 2589-0042
VL - 26
JO - iScience
JF - iScience
IS - 3
M1 - 106201
ER -