TY - JOUR
T1 - Photoprotective responses of three intertidal Antarctic macroalgae to short-term temperature stress
AU - Sáez, Claudio A.
AU - Troncoso, Macarena
AU - Navarrete, Camilo
AU - Rodríguez-Rojas, Fernanda
AU - Navarro, Nelso
AU - Trabal, Andrés
AU - Lavergne, Céline
AU - Pardo, Diego
AU - Brown, Murray T.
AU - Gómez, Iván
AU - Figueroa, Félix L.
AU - Celis-Plá, Paula S.M.
N1 - Publisher Copyright:
Copyright © 2023 Sáez, Troncoso, Navarrete, Rodríguez-Rojas, Navarro, Trabal, Lavergne, Pardo, Brown, Gómez, Figueroa and Celis-Plá.
PY - 2023
Y1 - 2023
N2 - The Antarctic Peninsula is experiencing one of the highest warming rates globally. In polar regions, macroalgae thrive under extreme environmental conditions, which could worsen because of future climate change scenarios, including increased ultraviolet exposure, extremely low light availability, and fluctuating temperatures, particularly in the intertidal zones. To investigate the potential role of photoprotective and antioxidant mechanisms in response to future increases in sea surface temperatures caused by climate change, we conducted laboratory experiments using three intertidal macroalgae model species: Adenocystis utricularis (Ochrophyta, Phaeophyceae), Pyropia endiviifolia (Rhodophyta, Bangiophyceae), and Monostroma hariotii (Chlorophyta, Ulvophyceae). These algae were collected in Punta Artigas (King George Island, Antarctica) and acclimated at 2°C for 48 h. They were then assessed in laboratory experiments for up to 5 days under two treatments: (1) control conditions at 2°C and (2) elevated tem.perature conditions at 8°C, representing the most negative increment in SSTs estimated by the end of the 21st century. Carbon, nitrogen, pigments (chlorophylls and carotenoids), mycosporine-like amino acids (MAAs), and phenolic compounds were quantified after 3 and 5 days of exposure. For M. hariotii, elevated temperatures led to an increase in the C/N ratio, total antioxidant capacity, and levels of nitrogen, total carotenoids, chlorophyll-a, pigments (chlorophyll-b and violaxanthin), and phenolic compounds. For A. utricularis, elevated temperatures led to elevated C/N ratio and levels of chlorophyll-a and carotenoids (fucoxanthin and β-carotene). For P. endiviifolia, elevated temperatures resulted in elevated levels of carotenoids (lutein and β-carotene), phenolic compounds, and MAAs (porphyra-334, shinorine, and palythine). Thus, our study suggests that increasing water temperatures due to global warming can enhance the photoprotective abilities of three Antarctic intertidal macroalgae (M. hariotii, A. utricularis, and P. endiviifolia), with each species showing specific responses.
AB - The Antarctic Peninsula is experiencing one of the highest warming rates globally. In polar regions, macroalgae thrive under extreme environmental conditions, which could worsen because of future climate change scenarios, including increased ultraviolet exposure, extremely low light availability, and fluctuating temperatures, particularly in the intertidal zones. To investigate the potential role of photoprotective and antioxidant mechanisms in response to future increases in sea surface temperatures caused by climate change, we conducted laboratory experiments using three intertidal macroalgae model species: Adenocystis utricularis (Ochrophyta, Phaeophyceae), Pyropia endiviifolia (Rhodophyta, Bangiophyceae), and Monostroma hariotii (Chlorophyta, Ulvophyceae). These algae were collected in Punta Artigas (King George Island, Antarctica) and acclimated at 2°C for 48 h. They were then assessed in laboratory experiments for up to 5 days under two treatments: (1) control conditions at 2°C and (2) elevated tem.perature conditions at 8°C, representing the most negative increment in SSTs estimated by the end of the 21st century. Carbon, nitrogen, pigments (chlorophylls and carotenoids), mycosporine-like amino acids (MAAs), and phenolic compounds were quantified after 3 and 5 days of exposure. For M. hariotii, elevated temperatures led to an increase in the C/N ratio, total antioxidant capacity, and levels of nitrogen, total carotenoids, chlorophyll-a, pigments (chlorophyll-b and violaxanthin), and phenolic compounds. For A. utricularis, elevated temperatures led to elevated C/N ratio and levels of chlorophyll-a and carotenoids (fucoxanthin and β-carotene). For P. endiviifolia, elevated temperatures resulted in elevated levels of carotenoids (lutein and β-carotene), phenolic compounds, and MAAs (porphyra-334, shinorine, and palythine). Thus, our study suggests that increasing water temperatures due to global warming can enhance the photoprotective abilities of three Antarctic intertidal macroalgae (M. hariotii, A. utricularis, and P. endiviifolia), with each species showing specific responses.
KW - Antarctic seaweeds
KW - carotenoids
KW - mycosporine-like amino acids
KW - phenolic compounds
KW - photoprotective responses
UR - http://www.scopus.com/inward/record.url?scp=85176260813&partnerID=8YFLogxK
U2 - 10.3389/fmars.2023.1223853
DO - 10.3389/fmars.2023.1223853
M3 - Article
AN - SCOPUS:85176260813
SN - 2296-7745
VL - 10
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
M1 - 1223853
ER -