Phylogenetic incongruence inferred with two mitochondrial genes in Mepraia spp. and Triatoma eratyrusiformis (Hemiptera, Reduviidae)

Ricardo Campos-Soto, Fernando Torres-Pérez, Aldo Solari

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Mitochondrial DNA (mtDNA) is widely used to clarify phylogenetic relationships among and within species, and to determine population structure. Due to the linked nature of mtDNA genes it is expected that different genes will show similar results. Phylogenetic incongruence using mtDNA genes may result from processes such as heteroplasmy, nuclear integration of mitochondrial genes, polymerase errors, contamination, and recombination. In this study we used sequences from two mitochondrial genes (cytochrome b and cytochrome oxidase subunit I) from the wild vectors of Chagas disease, Triatoma eratyrusiformis and Mepraia species to test for topological congruence. The results showed some cases of phylogenetic incongruence due to misplacement of four haplotypes of four individuals. We discuss the possible causes of such incongruence and suggest that the explanation is an intra-individual variation likely due to heteroplasmy. This phenomenon is an independent evidence of common ancestry between these taxa.

Original languageEnglish
Pages (from-to)390-395
Number of pages6
JournalGenetics and Molecular Biology
Volume38
Issue number3
DOIs
StatePublished - 1 Jul 2015

Keywords

  • Chagas disease
  • Cytochrome
  • Gajardoi
  • Heteroplasmy
  • Spinolai
  • Sylvatic vectors

Fingerprint

Dive into the research topics of 'Phylogenetic incongruence inferred with two mitochondrial genes in Mepraia spp. and Triatoma eratyrusiformis (Hemiptera, Reduviidae)'. Together they form a unique fingerprint.

Cite this