TY - JOUR
T1 - Regeneration in zebrafish lateral line neuromasts
T2 - Expression of the neural progenitor cell marker Sox2 and proliferation-dependent and -independent mechanisms of hair cell renewal
AU - Hernández, Pedro P.
AU - Olivari, Francisco A.
AU - Sarrazin, Andrés F.
AU - Sandoval, Pablo C.
AU - Allende, Miguel L.
PY - 2007/4
Y1 - 2007/4
N2 - Mechanosensory hair cells are essential for audition in vertebrates, and in many species, have the capacity for regeneration when damaged. Regeneration is robust in the fish lateral line system as new hair cells can reappear after damage induced by waterborne aminoglycoside antibiotics, platinum-based drugs, and heavy metals. Here, we characterize the loss and reappearance of lateral line hair cells induced in zebrafish larvae treated with copper sulfate using diverse molecular markers. Transgenic fish that express green fluorescent protein in different cell types in the lateral line system have allowed us to follow the regeneration of hair cells after different damage protocols. We show that conditions that damage only differentiated hair cells lead to reappearance of new hair cells within 24 h from nondividing precursors, whereas harsher conditions are followed by a longer recovery period that is accompanied by extensive cell division. In order to characterize the cell population that gives rise to new hair cells, we describe the expression of a neural stem cell marker in neuromasts. The zebrafish sox2 gene is strongly expressed in neuromast progenitor cells, including those of the migrating lateral line primordium, the accessory cells that underlie the hair cells in neuromasts, and in interneuromastic cells that give rise to new neuromasts. Moreover, we find that most of the cells that proliferate within the neuromast during regeneration express this marker. Thus, our results describe the dynamics of hair cell regeneration in zebrafish and suggest the existence of at least two mechanisms for recovery of these cells in neuromasts.
AB - Mechanosensory hair cells are essential for audition in vertebrates, and in many species, have the capacity for regeneration when damaged. Regeneration is robust in the fish lateral line system as new hair cells can reappear after damage induced by waterborne aminoglycoside antibiotics, platinum-based drugs, and heavy metals. Here, we characterize the loss and reappearance of lateral line hair cells induced in zebrafish larvae treated with copper sulfate using diverse molecular markers. Transgenic fish that express green fluorescent protein in different cell types in the lateral line system have allowed us to follow the regeneration of hair cells after different damage protocols. We show that conditions that damage only differentiated hair cells lead to reappearance of new hair cells within 24 h from nondividing precursors, whereas harsher conditions are followed by a longer recovery period that is accompanied by extensive cell division. In order to characterize the cell population that gives rise to new hair cells, we describe the expression of a neural stem cell marker in neuromasts. The zebrafish sox2 gene is strongly expressed in neuromast progenitor cells, including those of the migrating lateral line primordium, the accessory cells that underlie the hair cells in neuromasts, and in interneuromastic cells that give rise to new neuromasts. Moreover, we find that most of the cells that proliferate within the neuromast during regeneration express this marker. Thus, our results describe the dynamics of hair cell regeneration in zebrafish and suggest the existence of at least two mechanisms for recovery of these cells in neuromasts.
KW - Hair cell
KW - Lateral line
KW - Regeneration
KW - Sox2
KW - Supporting cells
UR - http://www.scopus.com/inward/record.url?scp=34249848313&partnerID=8YFLogxK
U2 - 10.1002/dneu.20386
DO - 10.1002/dneu.20386
M3 - Article
C2 - 17443814
AN - SCOPUS:34249848313
VL - 67
SP - 637
EP - 654
JO - Developmental Neurobiology
JF - Developmental Neurobiology
SN - 1932-8451
IS - 5
ER -