TY - JOUR
T1 - SDSS-IV MaNGA
T2 - The formation sequence of S0 galaxies
AU - Fraser-McKelvie, Amelia
AU - Aragón-Salamanca, Alfonso
AU - Merrifield, Michael
AU - Tabor, Martha
AU - Bernardi, Mariangela
AU - Drory, Niv
AU - Parikh, Taniya
AU - Argudo-Fernández, Maria
N1 - Funding Information:
The authors would like to gratefully acknowledge Eric Emsellem and Cheng Li for useful discussions on the subject, and the anonymous referee for useful comments that improved this paper. AFM acknowledges support from STFC. MAF is grateful for financial support from the CONICYT Astronomy Program CAS-CONICYT project No. CAS17002, sponsored by the Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org.
Funding Information:
The authors would like to gratefully acknowledge Eric Emsellem and Cheng Li for useful discussions on the subject, and the anonymous referee for useful comments that improved this paper. AFM acknowledges support from STFC. MAF is grateful for financial support from the CONICYT Astronomy Program CAS-CONICYT project No. CAS17002, sponsored by the Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University ofVirginia, University ofWashington, University ofWisconsin, Vanderbilt University, and Yale University
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Gas stripping of spiral galaxies or mergers are thought to be the formation mechanisms of lenticular galaxies. In order to determine the conditions in which each scenario dominates, we derive stellar populations of both the bulge and disc regions of 279 lenticular galaxies in the MaNGA survey.We find a clear bimodality in stellar age and metallicity within the population of S0s and this is strongly correlated with stellar mass. Old and metal-rich bulges and discs belong to massive galaxies, and young and metal-poor bulges and discs are hosted by low-mass galaxies. From this we conclude that the bulges and discs are co-evolving. When the bulge and disc stellar ages are compared, we find that the bulge is almost always older than the disc for massive galaxies (M⋆ > 1010 M⊙). The opposite is true for lower mass galaxies.We conclude that we see two separate populations of lenticular galaxies. The old, massive, and metal-rich population possess bulges that are predominantly older than their discs, which we speculate may have been caused by morphological or inside-out quenching. In contrast, the less massive and more metal-poor population have bulges with more recent star formation than their discs. We postulate they may be undergoing bulge rejuvenation (or disc fading), or compaction. Environment does not play a distinct role in the properties of either population. Our findings give weight to the notion that while the faded spiral scenario likely formed low-mass S0s, other processes, such as mergers, may be responsible for high-mass S0s.
AB - Gas stripping of spiral galaxies or mergers are thought to be the formation mechanisms of lenticular galaxies. In order to determine the conditions in which each scenario dominates, we derive stellar populations of both the bulge and disc regions of 279 lenticular galaxies in the MaNGA survey.We find a clear bimodality in stellar age and metallicity within the population of S0s and this is strongly correlated with stellar mass. Old and metal-rich bulges and discs belong to massive galaxies, and young and metal-poor bulges and discs are hosted by low-mass galaxies. From this we conclude that the bulges and discs are co-evolving. When the bulge and disc stellar ages are compared, we find that the bulge is almost always older than the disc for massive galaxies (M⋆ > 1010 M⊙). The opposite is true for lower mass galaxies.We conclude that we see two separate populations of lenticular galaxies. The old, massive, and metal-rich population possess bulges that are predominantly older than their discs, which we speculate may have been caused by morphological or inside-out quenching. In contrast, the less massive and more metal-poor population have bulges with more recent star formation than their discs. We postulate they may be undergoing bulge rejuvenation (or disc fading), or compaction. Environment does not play a distinct role in the properties of either population. Our findings give weight to the notion that while the faded spiral scenario likely formed low-mass S0s, other processes, such as mergers, may be responsible for high-mass S0s.
KW - Galaxies: elliptical and lenticular
KW - Galaxies: evolution
KW - Galaxies: general
KW - Galaxies: stellar content
UR - http://www.scopus.com/inward/record.url?scp=85060926259&partnerID=8YFLogxK
U2 - 10.1093/MNRAS/STY2563
DO - 10.1093/MNRAS/STY2563
M3 - Article
AN - SCOPUS:85060926259
VL - 481
SP - 5580
EP - 5591
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
SN - 0035-8711
IS - 4
ER -