Abstract
One of the limitations in tissue engineering is the restricted ability to expand the number of cells, because somatic cells can duplicate a limited number of times before they lose the ability to divide, leading to a senescent state. Here we report that the interaction of senescent fibroblasts with fibrin polymer can modify the senescent phenotype and partially restore the ability of growth-arrested cells to continue replicating. Primary human dermal fibroblasts were grown to >90% SA/β-Gal (senescence associated β-galactosidase) . The senescent cells were immobilized in fibrin-polymers by mixing fibrinogen and thrombin solutions. Immobilized senescent cell cultures grew, however, their growth arrested after 24 h of immobilization. The percentage of cells with a positive reaction at SA/β-Gal did not decrease significantly after immobilization, but the intensity of the stain decreased. The glycolytic activity in immobilized senescent fibroblast was re-established at pre-senescent levels. In conclusion, fibrin induces changes in the phenotype of senescent human fibroblasts. This simple procedure could complement available tissue-engineering techniques to increase the amount of biomass seeded on a fibrin scaffold, which could be beyond senescence.
Original language | English |
---|---|
Pages (from-to) | 1929-1942 |
Number of pages | 14 |
Journal | Journal of Biomaterials Science, Polymer Edition |
Volume | 20 |
Issue number | 13 |
DOIs | |
State | Published - 1 Sep 2009 |
Keywords
- Fibrin
- Human fibroblasts
- Immobilization
- Senescence