Abstract
Mercury (Hg) is an element with high toxicity, especially to the nervous system, and fluorescent pigments are used to visualize dynamic processes in living cells. A little explored fluorescent core is chalcone. Herein, we synthesized chalcone (2E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (8) and assessed its photophysical properties. Moreover, the application of this chemosensor in aqueous media shows a selective fluorescence quenching effect with Hg(II). The figures of merit for the chemosensor were calculated to be LOD = 136 nM and LOQ = 454 nM, as well as a stoichiometry of 1:1. Furthermore, the association constant (Ka) and fluorescence quenching constant (KSV) were calculated using the Benesi–Hildebrand and Stern–Volmer equations to be Ka= 9.08 × 104 and KSV= 1.60 × 105, respectively. Finally, by using a computational approach, we explain the interaction between chalcone (8) and Hg(II) and propose a potential quenching mechanism based on the blocking of photoinduced electron transfer.
Original language | English |
---|---|
Pages (from-to) | 1449-1456 |
Number of pages | 8 |
Journal | Journal of Fluorescence |
Volume | 32 |
Issue number | 4 |
DOIs | |
State | Published - Jul 2022 |
Keywords
- Chalcone
- Mercury(II)
- Selective fluorescence quenching
- chemosensor