TY - JOUR
T1 - Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole
AU - Kuang, Xiao Mei
AU - Övgün, Ali
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/12
Y1 - 2022/12
N2 - Motivated by (i) more and more interest in strong gravitational lensing by supermassive black holes due to the achievement of EHT observations, (ii) the ongoing popular topic on the possibility of Lorentz symmetry being broken in gravitation and its consequences, we will apply the Einstein bumblebee gravity with Lorentz violation (LV) to the study of strong gravitational lensing effect and the black hole shadow of slowly rotating Kerr-like black hole. In the strong gravitational lensing sector, we first calculate the deflection angle; then treating the slowly rotating Kerr-like black hole as supermassive M87* black hole, we evaluate the gravitational lensing observables (position, separation and magnification) and the time delays between the relativistic images. In the black hole shadow sector, we show the effect of LV parameter on the luminosity of the black hole shadow and photon sphere using the infalling spherical accretion. Moreover, we explore the dependence of various shadow observables on the LV parameter, and then give the possible constraint on the LV parameter by M87* black hole of EHT observations. We find that the LV parameter shows significant effect on the strong gravitational lensing effect, the black hole shadow and photon sphere luminosity by accretion material. Our results point out that the future generations of EHT observation may help to distinguish the Einstein bumblebee gravity from GR, and also give a possible constrain on the LV parameter.
AB - Motivated by (i) more and more interest in strong gravitational lensing by supermassive black holes due to the achievement of EHT observations, (ii) the ongoing popular topic on the possibility of Lorentz symmetry being broken in gravitation and its consequences, we will apply the Einstein bumblebee gravity with Lorentz violation (LV) to the study of strong gravitational lensing effect and the black hole shadow of slowly rotating Kerr-like black hole. In the strong gravitational lensing sector, we first calculate the deflection angle; then treating the slowly rotating Kerr-like black hole as supermassive M87* black hole, we evaluate the gravitational lensing observables (position, separation and magnification) and the time delays between the relativistic images. In the black hole shadow sector, we show the effect of LV parameter on the luminosity of the black hole shadow and photon sphere using the infalling spherical accretion. Moreover, we explore the dependence of various shadow observables on the LV parameter, and then give the possible constraint on the LV parameter by M87* black hole of EHT observations. We find that the LV parameter shows significant effect on the strong gravitational lensing effect, the black hole shadow and photon sphere luminosity by accretion material. Our results point out that the future generations of EHT observation may help to distinguish the Einstein bumblebee gravity from GR, and also give a possible constrain on the LV parameter.
KW - Black hole shadow cast
KW - Bumblebee gravity theory
KW - Strong gravitational lensing
UR - http://www.scopus.com/inward/record.url?scp=85140884710&partnerID=8YFLogxK
U2 - 10.1016/j.aop.2022.169147
DO - 10.1016/j.aop.2022.169147
M3 - Article
AN - SCOPUS:85140884710
SN - 0003-4916
VL - 447
JO - Annals of Physics
JF - Annals of Physics
M1 - 169147
ER -