TY - JOUR
T1 - The CGM2 Survey
T2 - Quenching and the Transformation of the Circumgalactic Medium
AU - Tchernyshyov, Kirill
AU - Werk, Jessica K.
AU - Wilde, Matthew C.
AU - Prochaska, J. Xavier
AU - Tripp, Todd M.
AU - Burchett, Joseph N.
AU - Bordoloi, Rongmon
AU - Howk, J. Christopher
AU - Lehner, Nicolas
AU - O’Meara, John M.
AU - Tejos, Nicolas
AU - Tumlinson, Jason
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - This study addresses how the incidence rate of strong O vi absorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure O vi absorption within 400 projected kpc and 300 km s−1 of 52 galaxies with M * ∼ 3 × 1010 M ⊙. The galaxies have redshifts 0.12 < z < 0.6, stellar masses 1010.1 M ⊙ < M * < 1010.9 M ⊙, and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density O vi absorption (N O VI ≥ 1014.3 cm−2) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the O vi covering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3σ-equivalent statistical significance. On average, the CGM of star-forming galaxies with M * ∼ 3 × 1010 M ⊙ contains more O vi than the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass.
AB - This study addresses how the incidence rate of strong O vi absorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure O vi absorption within 400 projected kpc and 300 km s−1 of 52 galaxies with M * ∼ 3 × 1010 M ⊙. The galaxies have redshifts 0.12 < z < 0.6, stellar masses 1010.1 M ⊙ < M * < 1010.9 M ⊙, and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density O vi absorption (N O VI ≥ 1014.3 cm−2) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the O vi covering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3σ-equivalent statistical significance. On average, the CGM of star-forming galaxies with M * ∼ 3 × 1010 M ⊙ contains more O vi than the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass.
UR - http://www.scopus.com/inward/record.url?scp=85160579423&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/acc86a
DO - 10.3847/1538-4357/acc86a
M3 - Article
AN - SCOPUS:85160579423
SN - 0004-637X
VL - 949
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 41
ER -