A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

47 Citas (Scopus)

Resumen

The binarization of Swarm intelligence continuous metaheuristics is an area of great interest in operations research. This interest is mainly due to the application of binarized metaheuristics to combinatorial problems. In this article we propose a general binarization algorithm called K-means Transition Algorithm (KMTA). KMTA uses K-means clustering technique as learning strategy to perform the binarization process. In particular we apply this mechanism to Cuckoo Search and Black Hole metaheuristics to solve the Set Covering Problem (SCP). A methodology is developed to perform the tuning of parameters. We provide necessary experiments to investigate the role of key ingredients of the algorithm. In addition, with the intention of evaluating the behavior of the binarizations while the algorithms are executed, we use the Page's trend test. Finally to demonstrate the efficiency of our proposal, Set Covering benchmark instances of the literature show that KMTA competes clearly with the state-of-the-art algorithms.

Idioma originalInglés
Páginas (desde-hasta)646-664
Número de páginas19
PublicaciónSwarm and Evolutionary Computation
Volumen44
DOI
EstadoPublicada - feb. 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics'. En conjunto forman una huella única.

Citar esto