A continuous bowen-mañé type phenomenon

Esteban Muñoz-Young, Andrés Navas, Enrique Pujals, Carlos H. Vásquez

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In this work we exhibit a one-parameter family of C1- diffeomorphisms Fα of the 2-sphere, where α > 1, such that the equator S1 is an attracting set for every F α and Fα|S1 is the identity. For α > 2 the Lebesgue measure on the equator is a non ergodic physical measure having uncountably many ergodic components. On the other hand, for 1 < α < 2 there is no physical measure for Fα. If α < 2 this follows directly from the fact that the ω-limit of almost every point is a single point on the equator (and the basin of each of these points has zero Lebesgue measure). This is no longer true for α = 2, and the non existence of physical measure in this critical case is a more subtle issue.

Idioma originalInglés
Páginas (desde-hasta)713-724
Número de páginas12
PublicaciónDiscrete and Continuous Dynamical Systems
Volumen20
N.º3
DOI
EstadoPublicada - mar 2008
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A continuous bowen-mañé type phenomenon'. En conjunto forman una huella única.

Citar esto