A Machine Learning Approach for the Automatic Classification of Schizophrenic Discourse

Hector Allende-Cid, Juan Zamora, Pedro Alfaro-Faccio, Maria Francisca Alonso-Sanchez

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Schizophrenia is a chronic neurobiological disorder whose early detection has attracted significant attention from the clinical, psychiatric, and also artificial intelligence communities. This latter approach has been mainly focused on the analysis of neuroimaging and genetic data. A less explored strategy consists in exploiting the power of natural language processing (NLP) algorithms applied over narrative texts produced by schizophrenic subjects. In this paper, a novel dataset collected from a proper field study is presented. Also, grammatical traits discovered in narrative documents are used to build computational representations of texts, allowing an automatic classification of discourses generated by schizophrenic and non-schizophrenic subjects. The attained results showed that the use of the proposed computational representations along with machine learning techniques enables a novel and precise strategy to automatically detect texts produced by schizophrenic subjects.

Idioma originalInglés
Número de artículo8678636
Páginas (desde-hasta)45544-45553
Número de páginas10
PublicaciónIEEE Access
Volumen7
DOI
EstadoPublicada - 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A Machine Learning Approach for the Automatic Classification of Schizophrenic Discourse'. En conjunto forman una huella única.

Citar esto