A new birnbaum–saunders distribution and its mathematical features applied to bimodal real-world data from environment and medicine

Jimmy Reyes, Jaime Arrué, Víctor Leiva, Carlos Martin-Barreiro

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

In this paper, we propose and derive a Birnbaum–Saunders distribution to model bimodal data. This new distribution is obtained using the product of the standard Birnbaum–Saunders distribution and a polynomial function of the fourth degree. We study the mathematical and statistical properties of the bimodal Birnbaum–Saunders distribution, including probabilistic features and moments. Inference on its parameters is conducted using the estimation methods of moments and maximum likelihood. Based on the acceptance–rejection criterion, an algorithm is proposed to generate values of a random variable that follows the new bimodal Birnbaum–Saunders distribution. We carry out a simulation study using the Monte Carlo method to assess the statistical performance of the parameter estimators. Illustrations with real-world data sets from environmental and medical sciences are provided to show applications that can be of potential use in real problems.

Idioma originalInglés
Número de artículo1891
PublicaciónMathematics
Volumen9
N.º16
DOI
EstadoPublicada - 2 ago. 2021

Huella

Profundice en los temas de investigación de 'A new birnbaum–saunders distribution and its mathematical features applied to bimodal real-world data from environment and medicine'. En conjunto forman una huella única.

Citar esto