A nonparametric method for estimating asymmetric densities based on skewed Birnbaum-Saunders distributions applied to environmental data

Helton Saulo, Víctor Leiva, Flavio A. Ziegelmann, Carolina Marchant

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

59 Citas (Scopus)

Resumen

In this paper, we introduce a new nonparametric kernel method for estimating asymmetric densities based on generalized skew-Birnbaum-Saunders distributions. Kernels based on these distributions have the advantage of providing flexibility in the asymmetry and kurtosis levels. In addition, the generalized skew-Birnbaum-Saunders kernel density estimators are boundary bias free and achieve the optimal rate of convergence for the mean integrated squared error of the nonnegative asymmetric kernel estimators. We carry out a data analysis consisting of two parts. First, we conduct a Monte Carlo simulation study for evaluating the performance of the proposed method. Second, we use this method for estimating the density of three real air pollutant concentration data sets. These numerical results favor the proposed nonparametric estimators.

Idioma originalInglés
Páginas (desde-hasta)1479-1491
Número de páginas13
PublicaciónStochastic Environmental Research and Risk Assessment
Volumen27
N.º6
DOI
EstadoPublicada - ago. 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A nonparametric method for estimating asymmetric densities based on skewed Birnbaum-Saunders distributions applied to environmental data'. En conjunto forman una huella única.

Citar esto