A-posteriori error estimates for linear exterior problems via mixed-FEM and DTN mappings

Mauricio A. Barrientos, Gabriel N. Gatica, Matthias Maischak

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)


In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the usual Cea error estimate and the corresponding rate of convergence. In addition, we develop two different a-posteriori error analyses yielding explicit residual and implicit Bank-Weiser type reliable estimates, respectively. Several numerical results illustrate the suitability of these estimators for the adaptive computation of the discrete solutions.

Idioma originalInglés
Páginas (desde-hasta)241-272
Número de páginas32
PublicaciónESAIM: Mathematical Modelling and Numerical Analysis
EstadoPublicada - 2002
Publicado de forma externa


Profundice en los temas de investigación de 'A-posteriori error estimates for linear exterior problems via mixed-FEM and DTN mappings'. En conjunto forman una huella única.

Citar esto