AbsTaylor: upper bounding with inner regions in nonlinear continuous global optimization problems

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper we propose AbsTaylor, a simple and quick method for extracting inner polytopes, i.e., entirely feasible convex regions in which all points satisfy the constraints. The method performs an inner linearization of the nonlinear constraints by using a Taylor form. Unlike a previous proposal, the expansion point of the Taylor form is not limited to the bounds of the domains, thus producing, in general, a tighter approximation. For testing the approach, AbsTaylor was introduced as an upper bounding method in a state-of-the-art global branch & bound optimizer. Furthermore, we implemented a local search method which extracts feasible inner polytopes for iteratively finding better solutions inside them. In the studied instances, the new method finds in average four times more inner regions and significantly improves the optimizer performance.

Idioma originalInglés
PublicaciónJournal of Global Optimization
DOI
EstadoAceptada/en prensa - 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'AbsTaylor: upper bounding with inner regions in nonlinear continuous global optimization problems'. En conjunto forman una huella única.

Citar esto